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ABSTRACT

Thiz paper introduces the principal concepts in the organization and operation of
the logic based knowledge processing system, called CK-LOG (A Caleulus for Knowledge
in LOGic). CK-LOG uses the frame based system’ MDS (the Meta Description” 3ystem)
for knowledge representation and for modelling world states. 1t uses a0 inference engine
based on Natural Deduction for stating and solving problems.

As a knowledge processing sysiem CK-LOG has several capabilities which are new
o the technology of knowledge representation systms: CK-LOG has special facilities to
represent and reason about actions and their time dependencies. Actions that occur in a
world state may create or destroy objects in the world or modify their properties, or
prevent or support other actions. The effects of actions are described in CK-LQOG using
modal eperators like CREATE, DESTROY, PREVENT, SUPPORT, KEEP, etc. These
operator expressions are also used to represent and reason about possible worlds that the
actions might lead to.

Most. significantly, CK-LOG is a jogic based knowledge processing aystem, just as
PROLOG is a logic based programming system. CK-LOG uses a three valued logical
system with truth values T (true), ! {unknown) and F (false) to build partial models of
world states, and the two valued logic:] system of T and F in its theorem proving 3ys-
tem. The use of the three valued logical system in its models of world states enables
CK-LOG to do problem solving in the coptext of incomplete information about world
stales.

The theorem proving system of CK-LOG uses a variant of the calculus of sequents
first proposed by Kanger {which its€lf 15 a variant of Gentzen's system). The two varia-
tions in CK-LOG are, (i). the use of a new algorithm called the mating olgorithm for
testing proofl termipations, and (ii) the use of specialized inference rules for reasoning
about modal czpressions using the posaible world semanties.. The mating salgerithm
gives the theorem proving system of CK-LOG several new capabilities: to identify infor-
mation that is pertipent 1o 3 giveD problem and retrieve it from its knowledge base, to
update its models of possible worlds during the problem solving process based on the
findings of the theorem proving system, to use these models of world states to test proof
terminations, and to generate hypotheses during the problem solving process that are
based on unknown information.

These various features of CK-LOG are desctibed bere. The paper eoncludes with a
discussion of the logic of frames as used in CK-LOG and establishes a condition called

locality condition as 3 sufficient condition for creating knowledge representations with
requisite completeness.
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1. Introduction.

Hierarchical representations based on fromes [Minsky 1975] have been extensively
used in Al systems for Enowledge representation and problem aolving [Goldstein 1976]
[Bobrow 1977) [Sridharan 1978} [Stefik 1979] {Schmolze 1982]. The frame definitions are
used in such Ai systems to define classes of objects in a problem domain and elements of
a domain language, DL, to describe situations in the world stales of the domzin. Models
of world states described in DL are created through frame instantiations. Problems are
stated to such s}l'ateuis as specifications in DL of models to be built or modified. The
controlling principle for problem solution is provided by the notion of model consiatencyn
A model generated by the system is a solution to a problem only if it satiafies the given
specification and is contradiction free. Frame based Al systems have demonstrated
significant problem solving competence in several experimental demains [Goldstein 1976]
[Bobrow 1977] [Stefik 1979] [Lenat 1976]. It seems appropriate that in the context of
this kind of competence the frame bosed systems acquired the special identity as

knowledge representation systems rather than just new programming systems.

The knowledge engincer who defines the frames is required 1o define also the pro-
cedures for frame inatantiations, and procedures for keeping a set of such instaotiations
contradiction free. Frames provide a convenient way of organizing the domain informa-
tion into dafa structures (symbol structures) over which the knowledge engineer could
write the needed problem ablving programs. The interpretation given to f}amu by these
programs will defise the semantics of frames in these systems. Frames as units of

« This work waz supported by ONR/ONT Grant 62T21N. { Curicotly oo sabbatical leave from Rutgem.
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knowledge do not thus have a standard logical semantica. This has had two undesirable

consequences:

(). It has led to a proliferation of varieties of frame based knowledge representation
systems. Each of these system» established its usefulness in a limited way in the
context of the particular applications that inspired their design. But they have
failed to advance our scientific understanding of the design and implementation of
such systems. I do not think that generation of yet more frame boased knowledge
repreaenfation systems would significantly change this-state of affaira. - -

(ii). It imposes on the user of any of these systems an enormous programming overhead
with its usual problems: lack of fexibility for growth and modifications, difficulty
of maintenance, and difficulties associated with tcehnology tranafer to new
domains of applications. This seems contrary to what should happen, because if
one knew how to represent and process knowledge in a computer, it seems it
should make computers easier to use and new systems easier to develop.

This impasse is not due to the organizational principle provided by frames, which
the above systems exploited, but it is because, (a). we did not have the logical founda-
tional knqwledge that was needed to characterize the nature of these systems and their
design, and (b). we did not have the technical means to integrate the principle of prob-
lem solving through theorem proving with frame based system organizations. The work
of Levesque {Levesque 1984] now gives us the logical foundations we needed to under-
stapd the nature and function of these systema. The work on CK-LOG (a Calculus for
Knowledge in LOGic) presented here int.egrat:al frame hased knowledge representation
with thesrem proving. CK-LOG may be viewed as being an instantiation of the

knowledge representation system characterized by Leveaque“.

CK-LOG is a logic based knowledge processing system, just as PROLOG is a logic
based programming system. It uses the frame based system MDS (the Meta Description
System) [Srinivasan 1973, '77] for knowledge repmsentatién and modeling world stales,
and a theorem proving system, the inference engine of CK-LOG that is based on nafural
deduction, for stating 2nd solving problems. CK-LOG's inference epgine uses a variant
of the calculus of sequents first proposed by Gentzen {Gentzen 1935] and later modified

- by {Kanger 1963]. The variant used in CK-LOG employs a new algorithm. called the

"w My :m:;:t;g_g‘;n_g of CK.LOG 1:1;! the wnting of tbia paper have both been conaiderably infuenced by Leveaques
work, = in now being wsed Lo implement a conduitation system, called OPPLAMEIONARL for N,
Nonsl Pasoing Sriniasan A TANT, [or Maval Opera-
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mating algorithm for t.eatiﬁg proof terminations, and uses specialized inference rules for
reasoning about modal expressions. Modal expressions are gsed in CK-LOG to
represent, and reason about ongoing actions, their time dependencies and the posssble
worlds that they might lead to, apd. to mediate communication between the inference
engine, the knowledge base and models of world states. Models are used in CK-LOG
both to check the consistency of the inference steps in its theorem proving: process, and
to identify and retrieve domain knowledge that is pertinent to the problem being solved.
Problems are.stated in CK-LOG as sequents which are generalizations of the Horn clause
forms used in PROLOG. A problem represented by 3 sequent ia the analog of
Levesque's ASK operator. A problem is said to be solved when the sequent representing

the problem is proven valid

CK-LOG uses MDS in two ways: (i) to define apd represent domain knowledge and
model world states, and (ii) to define and represent inference rules and model problem
states. Thus, the CK-LOG architecture gives it, in principle, the full meta-level capabili-

. N . *
ties to reason about its awn operations .

Actions in CK-LOG may create, or destroy objects in a world or modify their pro-
perties, or prevent or support other actions, Operators like CREATE, DESTROY,
PREVENT, SUPPORT, KEEP, ASSERT, etc., are used in the logical language of CK-
LOG as modal operaters. The modal expressions using these operators are interpreted in
CK-LOG in two ways, (i) as implicitly referring to the actions that are needed to per-
form the indicated operations, and (1) as describing situations in the possible worlds that
the actions might lead to. The ASSERT-expressions mediate communication between
the inference epgine and models of world states. These are the analogs of Leves-que’s
TELL operatar. A special inference rule, called KB-lookup {Knowledge Base lookup), is
used to mediate communication between the inference engine and the knowledge base.
The modal operators ISTRUE, ISFALSE and ISUNKNOWN that are used in the meta-
language of CK-LOG correspond to the K operator used by Levesque.

The modeling system MDS, that is used in CK-LOG, uses the three valued logié, T
(True), F (False} and ? (Unknown), T >t > F, and (nor 1) == . It models actions and

+ 1do vot think the curtent implementation of CK-LOG would slow thi i i i
e LG s aow in progrese, sllow this. The implementasion of the theorem proving
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time dependencies among the events over a lattice of time instants, t. Time intervals are
represented both by open intervals, (t, t,) a8 in (between (t, t,)), or semi-closed intervals
{t, ;) as in (during [t, v;)). MDS is implemented in Rutgers ELISP on the DEC-TOPS-
20 system. The logic of MDS and CK-LOG are described in this paper. The way we are
now using CK-LOG to implement the ezpert consultant, OPPLAN-CONSULTANT, for Naval

Operational Planning is discussed in [Srinivasan 1984].

The architecture of CK-LOG is shown schematically by the block diagram in figure

1.1. The two principal components of the system are represented in thisy diagram by
the two L-ahaped regions with bold outlines. The outer L-region is MD3 consisting of its
three components, the knowledge representation ayatr.m, KRS, the knowledge base, KB,
and the truth maintenance system, TMS, associated with the world states. The inner L- -
region represents the theorem proving syalem, TPS, consisting of its three components,
meta-syatem for defining inference rules, MSI, the kpowledge base of inference rules,
- KBI, and the inference engine, IE, with its associated problem atatea. MSI is imple-
mented using KRS. The rules in KBI are represented using structures similar to those in
KB. IE is partly implemented using the facilities available in TMS, and partly through
specialized routines written in ELISP. The block between the two L’s, called Ul, is the

uaer interface.

This paper is orgabized in four major sections. Section 2 imtroduces the calculus of
sequents, the theorem proving system TPS, the mating algorithm and the modifications
to the calculus of sequents introduced in CK-LOG to communicate with models of world
states and the knowledge base, as well as t6 reason about the possible worlds represented
by modal ezpressions. Section 3 presents the principal modeling facilities of MD3. The
way MDS is being used to implement TPS is briefly outlined in Appendix 1. Section 4
presents an example that illustrates the use of TPS and TMS to analyze, plan and exe-
cute actions in CK-LOG. Section 5 presents the logic of frames as they have been used
in MDS and introduces the locality principle that is used as a guiding principle for
defining knowledge. The paper concludes with a summary of the principal contributions

‘ made by CK-LOG to the technology of knowledge representation systems. ‘The

knowledge description paradigm used in CK-LOG is outlined in the next subsection.
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Figure 1.1: The Architecturé of CK-LOG.

1.1. The Knowledge Description Paradigm.

| We begin with a universe U. This universe consists of physical objects, actions and
concepts. Concepta are sets of objects and/or actions. Actions modify the objects, con-

cepts and actions themselves. The state of this universe at time. t, is called the world
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F Y
state’, denoted by U,
Let X be a concept in U. [t is assumed that one’s understanding of X is determined

by one’s knowledge of the five aspects of X shown below:

structure: Components of X, i.e. the set of elementa of U that together constitute X, and
the way they are related to X.

function: What X is intepded for. Statements which can be made true by X in the
yniverse U. '

behavior: Valid statements about the modifications in U that may occur while X is per-
forming its function. .

analysis:  Generating valid statements about the function, (or function and behavior) of
X from given specifications of sfruclure {or structure and Junction) of X.

design: This is the converse of analysis; generating valid statements about structure
(or structure and function) of X, from given specifications of function {or
behavior and function) of X.

The language used to describe these five aspects is called TML (The Meta Language).
For a concept-X in U, let K(X) denote the knowledge ofi(, namely the definition of the
above five aspects of X in the language TML.. Let K[U] be the knowledge of U, namely
the set of all K{¥X) for X in U. (CK-LOG + K[U]) is the knowledge based problem solv-

ing system for the universe U.

As we shall see below, definitions of structures of concepts in U will introduce to
CK-LOG the elements of a logical language, DL (The Domain Language). This is the
language used by CK-LOG to describe situations in the world states U,. DL is the sub-

language of TML without modal expressions, that is specialized to the given universe,
u. |

Another part of the definition of the knowledge of a given universe in CK-LOG is
the definition of the operators that are used in TML to describe situations in possible

future worlds and to communicate with the knowledge base and world states. Operator

- . L3
expreszions like

t Throughout thiz paper [ will use cthe phraae ‘world state’ for* ceasi
; ' or ‘modets of world state’. Oc nall i i
the ‘world states’ that models represent. But $hia will not rwsalt in sy confosion. casionally [ will be rferriog o

#+ Example taken from OPPLAN-CONSULTANT domain.
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[CREATE
({(EXISTS region, (southern-uhou—ol‘ France))
((during interval,)(controlled-by region, Allien))]

are interpreted by CK-LOG aa referring to the truth or falsity of their arguments in
hypothetical werlds, the worlds ip which the actions, that are implicitly depoted by the
expressions, have termipated. For a given arbitrary logical expression, CK-LOG uses its
knowledge base and inferencing facilities to identify tbe actions that are associated with
it by a given operator. Thus, the statement above specifies that in some possible future
world, because of the successful completion of the actions implicitly referred to by the
CREATE operator, it might be true that the Allies have control of some region in the

southern-shore-of France, during the specified interval.

If this statement is given to CK- LOG as a planning goal, then CK-LOG will use its
inference engine, its model of the current world state and its knowledge base to identify
the actions that are needed to select a region in southers France and take control of it,
and analyze the actions (and the possible epemy actions) in order to plap for them.

Thaus, statements in CK-LOG have both declarative and procedural interpretations.

Analysis methods for analyzing expressions like these are defined to CK-LOG by
specifying inference rules for them. The inference rules are nsed by the inference engine
to identify and ¢reate the actiods needed te make the expressions true. Thus, TML is
used not only to define the knowledge K[U], but also to define the domain language DL

and inference processes for the modal operators. Hence the name ‘The Meta Language'.

" Using a logical language as the domain language gives us two advantages: Deacrip-
tions of K{U] in TML and DL have well defined logical semantics, and one can use gen-
eral logical deductive techmquea to state and solve problems in the universe U, without
having to write specmhzed programs to tell CK-LOG how it should use K.[U] in its prob-
lem solving processes. CK-LOG does not attempt to solve difficult problems by itself. It
acts as an intelligent assistant to 2 humaﬁ problem solver and uses its models of wori&

states to guide itself in its problem solving processes. The way this is done in CK-LOG

is described in the ensuing sections.
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2. TPS, the Theorem Proving System of CK-LOG.

2.1. Sequenis, Problems, and Theorems.

A sequent has the form,
B1: X, o Xy = Yy o Y3 0§ mya0d0 S m.

where the X's and the Y's are arbitrary logical expressions in TML. Oune may read this

sequent a3,
From (X, and X, and ... and X,) conclude (Y, or Y, or ... or Y o)

The logical expressions on the left side of — may be viewed as kpnown facts, or
hypotheses, The sequent says, given that the conjunction of known facts or hypotheses

is true, one may conclude the disjupction of the expressions on the right side of —

A sequent is said to be valid iff
[L1]: (X, anp ... a0 X,) naraes (Y, oR ... OR Y )l

‘is a theorem. This means that in every model (world state) in which the antecedent is
true the consequent is also true. One may think of this as saying that a sequent is falid
iff the conclusion proposed in the sequent is provably correct. A bullet is placed instead
of %' in a sequent to indicate that the sequent is valid as in,

T X, 0 X, =Y, oy Y0

A sequent without this bullet is interpreted as a problem to be solved. The problem is,

of course, to prove that the sequent is valid. The problem,

{Pll: - Yp ey Y

m !

with empty left side is interpreted in CK-LOG as,
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Given K{U] and the current U, prove that
one may conclude (Y, of ... OR Y.)

The problem,

P2l Xy oo Xy = Yy o Y

is ipterpreted as,
Assuming the hypotheses X, - and X, and given K[U] aad U,, prove that
one may conclude (Y, or ..on Yo
Thus in CK-LOG the logical statements corresponding to K{U] and the facts in U, are

assumed to be always available on the left side of each problem. When a user types
— (ACHIEVE (design opplan)) ;

to CK-LOG, the user is stating a problem to CK-LOG. The problem here is to achieve
the design of the operational plan, opplan. The specifications for the design of the opplan
are assumed to be aiready in the current world state. CK-LOG will use ita inference
engine and its model building ¢apability to interpret vhe above problem, to identify the
knowledge in K{U] that is relevant to the problem, translate it to the appropriate logical
expressions in DL, place them in the problem sequent when peeded, and proceed in its
aitempt to solve the problem (details in [Sripivasan 1984]). To understand this process
it is first necessary to know what the concept of a proof is in the language of sequents,

and how proofs are constructed. This is discussed in the next subsection.

2.2, The Concept of & Proof,

In presenting the concept of a proof apd the calculus of sequents, to simplify the
discussion, 1 will assume that K[U} and U, are empty, and for each problem all the
needed facts and hypotheses are explicitly given on the left side of the problem sequent,

The caleulus of sequents assumes a single axiom. The axiom is,

X=X =
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namely that ‘from X one may conclude X' for any logical expression X. The general

statement of this axiom bas the form,

where the dots indicate that the expression X may be surrounded on both the left and
the right side of -— by an arbitrary number of (zero or more) other logical expressions.
The differing number of dots indicate that the expressions ip the various locations need

pot all be the same. Clearly,

[(.. ano X AND ...) MMPLIES (o m X oR ..

is a theorem. Thus axiom [A] is valid.

The calculus of sequents provides rules for transforming a problem sequent to one
or more simpler problem sequents, preserving the validity of the sequent in this process,
i.e. if the original sequent is valid then all the transformed sequents are also valid and if
the original sequent is not valid then at least one of the transformed sequents is not
valid. Through successive transformations if one is able to reduce a problem sequent to
the form of the axiom [A] {or to a set of sequents each having the form of {A]} then,
since all transformations preserve validity, the problem sequeat should also be valid and
this would copstitute the proof of the problem. This process is illustrated in figure 2.1,
where ‘{A]’ in the leaves of the tree indicate that the sequent at that place is an axiom,
and ‘{P]" indicates that the sequent ai that place is a problem. If one is not able to
reduce the problem sequent at the root of this tree to axioms in this manner then the
validty of the problem sequent is not proven. The iree of deductions shown in figure 2.1
is called proof tree or deduction tree. The set of all leaf sequents in a deduction tree is

called the frontier set of the tree,

The set of rules used in the calculus is complete in the sense that if one started
with a valid sequent a3t the root then onme is guaranteed termination with axioms in all
leal nodes of the proof tree. [t is consistent in the sense that if one found a proof tree
with axioms in all leaf nodes then the problem at the root ia indeed valid. I will present

this calculus in four stages: In the first stage I will introduce the rules for proving
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p{] - ?lfl L?] th)\ {P\

e e — — g

Figure 2.1: The Structure of 3 Proof Tree in the Calculus of Sequents.

propositional expressions (i.e. expressions that do not contain quantifiers, EVERY or
EXISTS, or operators) and illustrate the use of the rules with a simple example. In the
second stage 1 will introduce the rules for reducing quantified expressions and again illus-
irate their use with an example, In the third stage 1 will introduce the modifications to
this ¢alculus that have been incorporated in CK-LOG to use K{U] and the world state.
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"In the fourth stage, | will introduce the rules for reducing modal expressions and timed
expressions. The action calculus defined by these rules is then illustrated in section 4

through a simple example.

2.3. The Propositional Calculus of Sequents.

The transformation rules are shpwn in table 2-1. Each rule has two parts: a bottom
sequent and a top sequent. [t is to be interpreted as follows: Any time a problem
sequent is found that matches the pattern shown in the bottom sequent, it may be
transformed to the sequent(s) shown on the top. The dots again indicate that the pat-
terns shown may be surrounded by an arbitrary number of other expressions in the

sequent, separated by commas.

TABLE 2-1: PROPOSITIONAL RULES.

, Rule Name Inference
vy X Fy = L
[AND _.] 3 } y
ey {xaDy), =
= iy Xy e 5 e = ey ¥,
(— AND] ' ! y
.= ., (xamy), ..
[— OR] e ™y X ¥,
.= o, (xory), .o
{OR _..] ey Xy o ™ e l T R
ey (XORF), o —
ey X = ey}
— N 14 L ¥
{ ] o =y (MOTX), .
N =] vy e ™ ey X
vy (NOTX), o=
[— IMP] e T e B LB
e = oy (xDLES V), ..
(IMP —] ey Yo e = wiee 5 | ey 0 =, X
. vy (X DMPLUES Y), . = ...

The first rule in the table is the left anp elimination rule, called [AND —] for short.
It is used to eliminate the anp connective that appear on the left side of a sequent. it
says in effect that any time an anvp expression, (x Anp y), is found on the left side of a

sequent, sepzrated by commas from other expressions, thep this avo tmay be eliminated
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by using the transformed sequent shown on top, where the anp is replaced by commas
keeping al! the rest um:hanged*. Clearly, this is consistent with our interpretation of
sequents shown in [L1] above: The commas on the left side do stand for anp's. Thus, if
the bottom sequent ia valid then so is the top one, and if the bottom sequent is not valid
then so is the top one. Therefore this rule does preserve validity. The dual of this rule

is the right or elimination rule, [~ OR|. Here cr is eliminated by commas.

The right anp elimination rule, [~ AND], may be interpreted as follows: If there is
a problem -in which-one wants to prove-(x aMp-y), then-this problem-may-be split into-
two problems, one to prove x, and the other to prove y, keeping all the rest in the prob-
lem sequent unchanged. If these two smaller problems are both proven valid then
clearly the original problem is valid. If at least one of the two smaller problems is not

valid then the original problem is also not valid. Thus this rule also preserves validity.

The dual of this rule is the left or elimination rule, [OR —}. Here also the probler
sequent i split into two subproblems. This may be interpreted as follows: A -~nclusion
from (x or y) is valid if and only if the conclusion from x alone is valid, and the conclu-
sion from y alone is also valid, keeping all the rest unchanged. Notice that (x or y) can
be true in three ways: When x is true and y is false, y is true and x is lalse, and both x
and y are true. To prove the conclusion for (x ce y) one should thus be able to prove it
in all the above three cases. All these three cases are covered by the two subproblems

generated by the [OR —]| rule.

The validity of the negation rules {— N| and [N —] are not quite as obvious as the
validity of the above rules. They say that a negated expression on one side of a sequent
may just be moved to the other side after removing the negation, and this would
preserve the validity of the transformation. To see why this is true let us consider [—
N] rule. Suppose the bottom sequent in [— N] was valid. Then the conjunction of the
expressions on the left side (let us call this C1) implies the disjunction of the expressions
(let us call this (D1 ok (noT x))) on the right in all world states, i.e.,

{2.1]: [C1 mwrLms (D1 on (ot X))).

+ 1p DL one may have expressions of the form (x! AMD x2 .. AND xn). Iz CK-LOG the {AND —| rule shown in table
2-1 in extended to cover this case. To simplify the presentation [ bave not abown the general case in this table,
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Since the transformation preserves validity, it follows that

2.2} [(C1 avp x) nerres D]
should also be true in all the world states. It is not hard to show that [2.1] is valid v
{2.2] is also valid.

The [~+ IMP| rule may be derived by transforming the implication (x mpLES ¥) to
({nor x) or y) and applying the rules ([~ OR], [— N]) in sequence to the resulting
sequent. Similarly, the {IMP —] rule is obtained by applying {{OR —], [N —]) to the
t.ramformeﬂ implication. Omne may similarly construct also the {IFF —| and [— IFF]

rales, They are not shown in table 2-1.

All the rules shown in table 2.1 preserve the validity of the sequenta. Also note
that each rule eliminates the oceurrence of a logical connective from a sequent. After
the application of any of these rules the resultant sequent(a) will be simpler in the sense
that they will contain one less logical conpective. Since aay finite propositional problem
will contain ouly » finite number of connectives in jt, repeated applications of these rules
w0 a problem should thus ultimately result in sequents that contain no logical connee-
tives whatsoever, After this point i* reached no more rules could be applied to any of
the sequents. At this point one may test whether each of these terminal sequents iz an
axiom or not. If all of them are axioms then the initial problem is valid. If any of the
terminal sequents is pot an axiom then the initial problem ia pot valid. The simple
examples shown in figure 2.2 illustrate this process, The rules applied to each problem
sequent are shown in this figure to the right of the sequent in the order they are applied.
The terminal sequents ares both axioms in the first problem. Thus the root problem is
valid. The terminal sequents 2a and 3 in the second probiem are both pot axioms. Here
the root problem is mot valid. Let me now present the rules for reducing quantified

expressions.

2.4. Calculus of Sequents for Quantified Expressions.

The rules are shown in table 2-II. There are four of these. The first rule in this
table is the ezistential instantiation rule, called {E —] for short. This replaces an
existentially quantifier expression of the form, ((EXISTS x range) exp), by the two
expressions ‘(ele € range), {subat ele x exp)’. Here ele is a new varvable pot used previ-

ously in the deduction tree in which the bottom sequent of the rule appears as a
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PROOF TREE 1:

8 X,y —Xxe db. x, y — y »,

|
|
|

X, ¥ = (x anp ¥) ; [— AND]

— (x anD y), (NoT x), (NoT ¥) ; [— Nj[—~ N]
(voT {x anD ¥)) — (o x) <R (MoT ¥)) ; [N -], [~ OR]

PROOF TREE 2:

. X = ;

2a. —x; 2b. —(noTXx); [— N

1T — (x anp (noT %)) § [~ AND]
Figure 2.2; Examples of Proofs in Propositional Legic,

problem. This variable will eventually be bound to a constant if and when the proof is
completed, i.e. when all the terminal sequents become axioms. It is the creation of this
constant that gives this rule its name, existential instantiation. This conatant is
required to be a member of the set specified by the range. Also, this constant is a func-
tion (is dependent) on all the variables uGx and ule that wight already appear in exp;
these variables might have been introduced into exp by previous applications of the [—
U] and [U =] rules in the deduction tree. This dependency is indicated by the binding

coadition in the ruale,
‘elc == (FEI uGx's & ulc’s in exp)',

where ‘FEI' is the name of 2 dummy function. It is used just to express the fact that elc
is dependent on its argumentsa. FEI is called the Skelem function. Subat ia a function
which is executed at the time of application of this rule. It substitutes elc for every
occurrence of the variable, x, in exp. The effect of this rule is to eliminate the ‘EXISTS’

quantifier from the sequent.
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The czistential generalization rule, [— E}, is quite similar to the existential instap-
tiation rule. Here also the quantifier expression is replaced by two new expressions simi-
lar to the ones used above. But, in this case instead of substituting the quantifier vari-
able by the new variable elc, it is substituted by the new variable eGx. eGx is called the
generalization variable. The value of this variable is also required to be in the set
specified by the range given in the quantification, and is dependent on the variables
uGx and ule that already appear in the expression, as specified i)y the binding condition

i the rule. Here the binding condition uses the Skolem function FEG.

The E-expressions appearing in the ryles in table 2-I1 are given special interpreta-
tion during variable binding process. They are used to restrict the possible bindings for
the variables. In cases where the range is a set of constants an attempt will be madle to
use the conatants directly to bind variables in the expressions. If range is not a set of
constants, then they can be either a union of concepts, X, or they may be expressjcus of

the form ‘(r x)’ where (r x) = {y | {r x )}, or combinations of these.

TABLE 2-1I: QUANTIFIER ELIMINATION RULES

Rule Name Inference
Ezistential Instantiation

-, (ele € range), (subst elc x exp), ... — ... ;
Binding: elc = {FE] uGx's & uic's in exp),

-~ ((EXISTS x range) exp), ... — .... ;
Ezratential Generalization

E =]

w = ..., {eGx € range), .. :
[— E] vee = ..., (8ubst eGx x exp), .. ;

Binding: eGx = (FEG ul¢'s & uGx's in exp).
| o =~ e, ((EXISTS x range} exp), .. ;
Unsversal Instantiation
[— U] .| .., {(ulcE range) — ..., {subst ulc x exp), .. ;
ooy =+ ..., ((EVERY x range) exp), .. ;
Universal Generalization

v, (ubst uGx x exp), .. = ... ;
vy o= (0GX € range), ... ;
« ((EVERY x range) exp), .. — ... ;

The difference between elc and eGx is the following: Whereas to bind elc one may
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create 3 new constant, Gz i3 required to be bound only to a constant that has been
already created in the deduction tree, ie. a constant that was ¢reated in the deduction
tree before the application of this rule. Similarly we also have the universal tnsiantiation
and universal generalization rules called [— U] and {U —], respectively, The universal
instantiation and generalization variables are independent variables, i.e. they are not
fupctionally dependent on any of the variables that might already appear in exp.
Notice that {U —] and |[— E] split the problem sequent into two new sequents. Also, it
should be noted that each application of a quantifier elimination: rule eliminates on!y the

outer most quantifier in a guantified expression.

Repeated application of these rules will eliminate all the quantified expressions from
the problem sequents and replace them by the appropriate propositional expressions.
But the naming scheme used for the variables preserve the nature of quaptification asso-
cinted with the variables, and the Skolem functions keep track of dependencies among
the various variables.

A geueral rule that governs the application of the rules given in tables 2.1 and 2-1I

is that

quantifier elimination rules may be applied to a problem sequept. only after
applying to the problem sequent all applicable propositional rules’.

Thus, after each application of a quantifier elimination rule one should apply to the
resultant sequent(s) all the applicable propositional rules before applying the next
quantifier elimination rule. The quantifier rules presented in table 2-11 are different from
the ones that are usually used in Gentzen's system {Kanger 1963][Bowen 1982]. Let me
first explain the conventional rules and proof termination tests (axiom tests), and then
cot;traat this with the new ones presented above together with the mating sigorithm that

is used to test proof terminations.

Normally, the quantified expressiona themselves are not removed from a sequent.
Everytime a quantifier rule is applied to a quantified expression, qexp, a copy of qexp is
introduced into the sequent on the side of the sequent where qexp is present, the outer-

most quantifier in the copy is removed and all occurrences of the outermost quantified

t There are several exceptions to thias rule, | will not enumerate them here. In the proof method illustrated iater in this
section | upe one such exception, where all applicable quantifier ruies are applied simultanecusly to a sequent, instead
of atrictly following the abeve raie.
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variable iz the copy is replaced by a new variable (or a new constant, as the case may
be). The level in the deduction tree at which this new variable or a constant was
created is an important parameter that is kept associated with that constant or variable.
The quantified expression itself is kept in the sequent for repeated future use if peces-
sary. After the application of the quantifier rules al! the applicable propositional rules

are applied to the resultant sequents in the frontier set.

At this point an aziom fest is given to the sequents in the frontier set. This test
consists of substituting each generalization variable in the frontier set by an instantiated
constant and examining the sequents in the frontier set after this substitution to see
whether all of them are axjoms. If they are not then ancther possible substitution is
tried, and this process is continued until all possible substitutions are exhausted. If
under one of these substitutions all the sequents in the frontier set become axioms, then
this indicates the successful termination of the proof. If some of the sequents in the
frontier set are not axioms, then the quantified expressions (if any) in the sequents are
further expanded by reapplication of the quantifier rules, and the entire process

presented above is iterated until, hopefully, a termination is achieved.

The assignment of constants to the variables is controlled by the following impor-
tant restriction:

A variable, uGx or eGx may be assigned a constant, elc or ulc only if the level

in the deduction tree at which the constant was created is not higher than the

level at which the variable was created. If all the variables generated at the

lowest level of the deduction tree are generalization variables then vwne or more

of them may be used as instantiation variables.
As long as this assignment restriction is obeyed the proof process described above is
complete and consistent (see {Kanger 1963] [Bowen 1982] for details). A significant
defect in this algorithm is that the number of possible substitutions for variables can get
astronomically large. The algorithm presented in [Bowen 1982]) seeks to combine
unification with the rule application process above to reduce the possible combinatorial
explosion. The meating algorithm presented below provides apother alternative to
efficiently search for proof terminations. The total elimination of quantified ‘expressions
from the sequents makes it possible to use an efficient scheme to keep track of the vari-

ables, their substitutions and bindings.
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In the variation intrcduced here constants are not created right away. Instead to
represent the copstants that might be created later, in the binding process discussed
below, new instantiation vatiables are introduced. As we shall see below in the discus-
sion of the mating algorithm t-he variables obtained after the elimination of all the
quantifiers are kept in phe sequent for repeated future use if necessary. Thus, a generali-
zation variable uGx may be repeatedly regeneralized by creating new variables during
the mating process, st diflerent levels of the deduction tree. For a variable, eGx ==
(FEG ...), if (FEG ...) is undefined for the current bindings of its argument then ¢Gx is
also regeneralized. Similarly, a universal instantiation variable may be repeatedly rein-
stantiated, and for an elc == (FEI ...}, if FEI i» undefined for the ¢urrent bindings of its
arguments, then elc is also reinstantiated, The Skolem funetions thus indicate when the
existential variables should be regeneralized and when the existential constants should be
reinstantiated. In the discussion below, the levels at which the regeneralizations and
reinstantiations occur are kept track of by the subscripts associated with the-variables

and the constanta. It is not hard to show that there is a proof in the conventional

scheme iff there is a proof in the variant.

"The mating algorithm used for axiom tests is best explained in the context of an

example. This is done in the next section.

2.5. Mating Algorithm for Testing Axiorom.
Lat us consider the following problem“:
El = {([EVERY x}{nor (f x x))),
E2 = ((EVERY x}EXISTS y)}f x ¥)),
E3 = ((EVERY x)[EVERY yEVERY z}{{{f x y} a0 (T y z)| nawsms [g x z{)).
E4 = {(EVERY x)}(EXISTS y)(g x ¥)).

Problem, {P3}: E1, E2,E3 - E4;

Substituting the expressions in [P3] we get,

#+ Ope may underaiand what thiz problem saya by subatituting ‘fatber-of’ for "I’ and 'grandfather-of’ for ‘g’ in the ox-
pressiona.
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(2.3]: {(EVERY x)(ror (f x ¥))},
. ((EVERY x}EXISTS y ){f = y)),
({(EVERY x{EVERY y)(EVERY z} ({(f x y) a0 (f ¥ z)] tweums [g x z]))
— ((EVERY x)(EXISTS y)(g x¥));  [U =|(5), [= U]

This is the sequent at the root, which is level 1 of the deduction tree. There are no pro-
positional ruies that can be applied to this sequent. The quantifier elimination rule [U
—| may be applied five times, as indicated in the segquent above, and [— U] rule once.

This will result in the following:

{2.4]: [vor (f uGx11 uGx11)), {(EXISTS y)(f uGx21 y)},
[{{f uGx31 uGy31] arp [f uGy31 uGz3)|) nma (g uGx31 WG23L)|
— [(EXISTS y)(g uledl y) ;[N ~[[E ~|{IMP =] | E]

This generates t,he. variables uGx11, uGx21, uGx31, uGy3l, uGz3l and uled]l. All these
variables are generated at level one. This is indicated in the naming of the variables by
,the last integer, which is 1. The first integer is used to indicate the expression in the
problem sequent in which it was generated. Thus uGxll was generated in the expres-
sion El, qu-21 in E2, etc. At this point the rules indicated to the right of ‘;" in sequent
[2.4] above are applied to this sequent resulting in the sequents below, and binding con-

ditions which use the FEI and FEG functions:
|
[3a]: [f uGx21 elc22],[g uGx31 uG231] -~ [f uGx1] uGx11],{g nicdl eGy4)} ;
Bindings: ele22 = (FEI uGx21), eGydj == (FEG ulc4l).
[3b]: {f uGx21 ele22] — [g ulcdl eGy4j),|f uGx11 uGx11],{f uGx31 uGy21] ;

[3c]: {f uGx21 elc22] — [g ulc4l eGy4j]{l vGx11 uGx11],{f wGy31 0Gz3]} ;

Notice that the existential gene;alizm,ioﬁ on the right side is represented by the variable
e(y4j, with an unknown leve] j. This follows from the level condition associated with
¢Gxi) in table 2-1I1 below, which specifies that j = 2, but does not fix a level for it.
There are no more rules that one can apply to the sequents at level 3. [t is time to do

the axiom tests. Let me first state the rules that specify the conditions for assigning

* In general cue will use function namer #8G; and FEL with ineteasing aubacnpt. numbers i and j in the binding condi-
tionz, if these functions are uszed severa] t.1me1| it 3 deduction tree.
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values to the generalization and instantiation variables, and the conditions for matching
atomic expressiops in a sequeni. These conditiona are showa in tables 2-III and 2-1V.
The tables are self explanatory. It ia useful to read these tables first before proceeding

further with the text.

TABLE 2-I: INTERPRETATION OF VARIABLES.

Variable Interpretation

Universal generalization variable generated at level, j, and associaied with the
expression Ei in a problem sequent. This variable is generalized at:-any level,
uGxij k > j, by creating a new level k variable, xik, and making the assignment
[uGxij — xik], while performing a match. The level of uGxij will then be
equsl to k. '

Existentia] generalization variable generated ai level, j, and associated with the
expression Ei in a problem sequent, Its value is always equal to the binding
eCxij condition, (FEG ule's & uGx's) specified at the time of generation of the variable,
for the current bindings of the arguments ules and uGx's. The level j of eGxij

is 2 1 + (maximum of levels of the arguments ule’s & uwGx's).

Universal instantiation variable generated at level, j, and associated with the
expression Ei in a problem sequent. Is instantiated at any level k = j, by
creating o new constant, cik, and making the assignment juleij « cik|, while
performing 3 match., The level of uleij will then be k, the level of cik.

uleij

Existential instantiation variable generated at level, j, and associated with the
expression Ei in a problem sequent. Its value always satisfies the binding cop-
dition, elcij == (FEl ulc's & uGx’s), specified at the time elcij was generated.
eleij The levej of elcij is equal to 1 + (maximum of the levels of the ule's & wGx's).
At any level, k 2> j, while performing a match, if (FE] ulc’s & uGx's) is
undefined and the level of elcij s k, then elcij is reinstantiated by creating a
new copstant cik and making the assignment {elcij «= cik].

This is a function term where { is 3 function name other than FEG and
FEI. Its arguments may be constants, variables or other function terms.

To teat for axioms one has to find a matching pair of atomic expressions in a3 prob-
lem sequent with one of the pair on the left side of the sequent and the other on the
right side. The atomic expressions will always have the form of thé relational expres-
sions in the language DL (these are called atoms). The algorithm used for finding a
match is called the mating algorithm, becayse as we shail see below, when a mating
gucceeds it will spawn new atoms in the sequents at the leaf nodes. The mating condi-

tions are shown in table 2.1V,
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TABLE 2-IV: CONDITIONS FOR MATING.

1.

A level j term, t-ij, is either 2 level j variable or constant, or a level ] function
term, or a level j FEG ot FEI expression. teij is grounded if it is.a constant, or an
FEI expression, or if it is » fuaction term and all its arguments are grounded.

A level j variable, x-ij, can match a level k grounded {erm, t-bk, ouly if j = k. A successful
match will geperate the substitution [x-ij/t-bk], in which x-ij is substituted by t-hk.

A level j variable x-ij can match any level k variable y-hk. The match
will generate the substitution [x-i}/y-hk] where j > k.

A variable, x-ij, can match any level k vngrounded function tertn t-hk only if none of
the grounded arguments of t-hk has a level > j. A successful match will produce the
substitution [x-ij/t-hk].

Two fupction terms, (f ...) and (g ...) can match only if f = g, and the arguments match.
It will produce the substitution corresponding to the substitutions of the arguments of the
matched function terms.

If eGxij = (FEG ule’s & uGx's), then a match with {FEG ...) will succeed
only if the match with e(Gxij succeeds.

If elcij = (FE! ule’s & uGx's), then a match with (FEI ...) will succeed
only if the match with elcij succeeds.

Two atoms match only if they have identical relation names (tuple names)
and their arguments match.

At no point may a level j variable, x-ij, become equal to a level k grounded term for k > j, due
to matching processes alone. (They could be equal if the sequent itsell had in it an equality
expression declaring them to be equal. The inference rule for equality is not discussed here.)

Let us now consider the possible matches in the leaf sequents of our example to see

how the above rules are applied. The sequent [3a] s reproduced below:

[3a]: [f uGx21 ele22),[g uGx31 wGedl] — {[ uGx11 uCGx11|[g uledl eGydj] ;
Binding: ¢l¢22 = {FEI uGx21).

If {f uGx21 elc22] i= mated with {f uGx11 uGx11] then vGx21 will become equal to elc22,

which is forbidden by the rule 9 in table 2.IV. 5o the only possible matech in [3a] is
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between [g uGx31 uGz31] and [g ulcdl ¢Gy4j]. When this match is done the inference
engine will create a new constant, say c4l, make the folowing assignments and note the

T

binding and substitutions' below:

Binding:  [¢Gydj = (FEG uledl)].
Assignment: [ule4l «— ¢4l].
Substitutions: [uGx31/c41, 0Gz31/(FEG c41)]

‘When the above subatituiion is now performed on the mated pair, each member of the
mated pair will yield through the substitution the same new atom, (g c41 (FEG c4l1)).
This is called the offapring. This offspring is now added to the sequent on ita left and
' rfght sides causing the sequent to become an axiom. The parents of this offspring are
still kept in the sequent. The same substitution is performed on all the oth.r sequents in
- the frontier set. This may result in the generation of several offsprings. Each sequent in
the frontier set is updated with the offsprings generated in the sequent through the sub-
stitution. Thus a given successful mating may result in the genmeration of several

offsprings. The resulting modified sequents at level 3 are shown below:

{3a-1]: |t uGx21 ele2?],[g uGx31 uG13l),[g c41 (FEG c4l)]
— [f uGx11 uGx11),|g uic4l eGy4i).jg ¢4l (FEG c41)| »

|3b-2]: [f uGx21 ele22] —
[g ulc4l eGydj),(g c11 (FEG <41]],
If uGx11 aGx11],[f uGx31 vGy31].{f c41 uGy3i};
Bindings: lc22 = (FEI uGx21), eGy4j = (FEG uledl).

[3c-2]: [f nGx21 elc22] —
. [g ulc4l eGy4j|ig c41 (FEG c41)f,
[f uGx11 uGx11],{f uGy31 uG231]{l uGy31 (FEG c41})] ;
Bindings: ele22 = (FEI yGx21), eGy4j = (FEG uledl).

In sequent [3b-2]-the inference engine will now first search the left side for a match with
the pewly introduced offspring on the right side and thus choose to match {f ¢41 uGy31]
with {f uGx21 elc22]. Here uGy31 (a level 1 variable) should matck with elc22 (a level 2
constant). But as per rule 2 in table 2-1V this is possible only if wGy31 is regeneralized.

{ b constructing subatitutions aiways variablos are substituted by copstanta, or a variable at level, 1, 1o substituted by
another at 2 level [ess than or equal te i, or a variable is substituted by an (FEG ..} expresmion. o an FEG expression
is substituted by an FEl expression, or 2 variahle in rubptituted by a termn of the form ‘(F ...}' where F is 2 function
pame  Every function, F, ured in CK:LOG shonid be declared to MDS. The interpretation given by MDS w0 F e
debned a2 2 lambda expression in LISP.
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Thus the system will create a new variable, say y32 and assign it to uGy3l and then
perform the mating. This will result in the following bindings, assignment and substity-

tions:

Binding: [ele22 = (FEI uGx21)].
Assignment: [uGy31 «— y32),
Substitutions; [uGx21/e41, y32/(FEI e41)].
Binding: [(FEI c41) = c22].

The system now creates a new constant c22 beéauae, a8 per conditiona‘given above for
assigning values, elc2? = (FEI c¢41), and (FE] ¢41) is at this point undefined and thus a
new constant is called for. The incorporation of these substitutions in the leaf sequents

' will now result in the following augmented sequents:

[3b-4]: [f uGx21 elc22], If ca1 ¢22)] —
& ulc41 eGy4j], [g c41 (FEG edl)], [f uGx-11 uGx-11),
{f wGx-31 uGy-31], [f c41 uGy31], If cd1 c22)] «

{3e-5]: [f uGx21 ele22], [f c41 ¢22| —
g ulcd] eGy4j], [g c4l (FEG c41)], {f uGx1t uGx11},
[f uGy31 uG231|, |f c22 (FEG ¢41)] ;

Here [3b-4] is an axiom. In [3¢-5] a match will now be attempted for the newly intro-
duced offspring [f 22 (FEG c¢41)]. This will canse the system to mate [ c22 (FEG c41)]
with [f uGx21 elc22]. The mating process here will first generalize wGx21 to x22, in
order to match it with ¢22, and obtain the substitution {x22/c22]. Then elc22 will be
equal to (FEI ¢22) which is at this point undefined. Thus a new constant ¢23 will be
created. Notice that in this mating, (FEG c41) can match with (FEI ¢22) because the
level of (FEG ¢41) can be any number that is greater than 1 as per rule given in table 2-
Il for variables eGxij. As a result of the match here (FEG ¢41) will acquire the level 3.

The results are shown below:
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Binding: {ele22 = (FEI uGx21)]
Assignment: [uGx21 + x22|.

Substitutions: [x22/c22, (FEG c41)/(FEI c22))|
Binding:  ¢28 = (FEI ¢22) = (FEG c41).

[3¢-6]: {f uGx21 elc2?,
|t e41 22|, [f c22 c23] —
|g uvledl eGydj|, (g c41 (FEG e41)],
[F uGx11 uGx11), [f uGy31 uGz3l],
[f c22 (FEG e41))],
|t c22 c23] »

i

These substitutions now reduce all the leaf sequentis to axioms and the proof is done.
Let us now take a look at what has happened by just listing the matched atoms in the

various leafl sequents:

[3a-1): [g c4l ¢23] — [g c4] c23)]
[3b-4}: [f c41 22 — [f c41 ¢22] »
[3c-6]: [f €22 ¢23] =~ {F c22 c23| »

If 4 is the ‘father-of’ relation and ‘g’ is the ‘grandfather-of’ relation then the above

result may be paraphrased as follows:
€22 is the father-of c41, ¢23 is the father of ¢22, and ¢23 is also the grandfa-

ther of ¢41, for any c4l.

In general, the search for mates in each leaf sequent ix very much like the search for
unifying literals in resolution theory [Robinson 1985]. But unlike resolution theory the
search is local to the sequent, Also, instead of searching for the most gencral substitu-
Hon one searches here for the maast specific substitution. Whereas in resolution theory
when two clauses are unified the matched literals are deleted, here when a mating
succeeds the sequents in the frontier set may get new offsprings added to them. Thus,
the mating algorithm illustrated above is the dual of the unification algorithm. The
mating process used for axiom tests is a bit more complicated than the naification algo-
rithm, because of the need to make assignments and test bindings and level conditions.
The presence of floating levels, as in the variable eGy4j, can at times complicate the
level checking problem. But in most cases this problem will be simple. The benefit that

one gains for this extra work is that it may reduce the search space of possible matings.

In the example above the candidate pairs for the matings in each sequent was
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unique. In general, of course, this will not be the case. There may be several choices
available for mates, leading to a possible search expiosion, and need for backtracking
when a chosen set of choices fail. Failure will occur in an axiom test for a sequent when
level checking fails for all the mated pairs in the sequent, or when there are no céndi-
dates available in the sequent for mating, or as we shall see in the next subsection, a

contradiction is detected in the world state associated with the sequent.

This basic scheme of proof construc:ion is further modified in CK.LOG’s inference
engine to facilitate communication with the knowledge base and the world states. These
modifications are discussed in the next subsection. The mating algorithm illustrated
above for axiom testing and variable substitution, and the modifications presented in the
next subsection, are unique to this inference engine and are new. They define a variant
of the method first proposed by Kanger [Kanger 1983). The proof procedure is complete
{in the sense that it can find the proof for every valid sequent) and consistent (in the
sense that every time the proof terminates suceessfuly the root problem is valid). Let me
now briefly outline how the above procedure bas been modified to facilitate interaction

with the world state and the knowledge base.

2.8. Communication Between Inference Engine,

Knowledge Base and World States,

The communication between the inferenmce engine, the knowledge base and the
world states i3 intended to serve two basic purposes:

1. To update problem sequents at the leal nodes of a deduction tree with
knowledge from the knowledge base K{U],

2. To update the world state based on the findings resulting from the axiom
tests performed on the leaf sequents in the deduction tree.

I will present the scheme first and then illustrate it vsing the example discussed above.
Let me here assume that the problem sequents do not contain any operator expressions.
Thus, to create new constants or to make a relation true (false) in the world state, I am
assuming that no actions would be inveked. To inireduce them into the world state

they will be simply asseried into the world state,

Each problem sequent, Q, in the deduction tree will have a unique world state, U,,

associated with it. It will alse have associated with it a set of problems called the
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hypothesis problems, denoted by H{Q|. The hypothesis problems associated with Q will
depend on information that is unknown in the world state, but is needed to solve Q.
They are generated during the problem solving process as discussed below. The problem

state deflaed by Q will consist of the following:

(Q, (predecessor-of Q), (successor-of Q), (binding-conditions-of Q)
(eseignmenis-of Q), (substitutions-of Q), (world-state-of Q),
(by pothesis-problems-of Q)).

The contezt of a world state, U, is the set of sequents defined by,

(context-of U,) == {Q | (world-state-of Q U,)).

Let F' be the set of sequenis in the leaf nodes of the deduction tree. F is the fron-
tier set of the deduction tree. At the beginning of the problem solﬁng process the fron-
tier set, F'y = {Q,), where Q, is the problem sequent at the root of the deduction tree.
The world state, U,, associated with Q, will be the current werld state that existed at
the time this problem was posed, _

When the successors of Q, are spawned the frontier set of the deduction tree will
change. Let {F,} be this new frontier set. The context of the world state, U,, will then
change to [{Q,} U F,]. This process of changing the context of the world state will con-
tinue as the deduction tree grows. So far the world state itself has not changed.
Changes to the world state may occur when an axiom test is performed on one of the

leal sequents in F.

Before performing the axiom test the sequents Q in F will at first be augmented
with information obtained from the knowledge base K[U]. The nature of this augmen-
tation will depend on the logical restrictions (conpsistency conditions) in K{U], that are
associated with the atoms that appear in Q. The augmentation process is described

below.

Let A = (r x y) be an atom that appears on the right side of 3 problem sequent Q

in {F}, separated by commas from the rest of the expressions on the right side as in

R ..— ., (rxy), .;
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Let x be an instance of the coneept X, y an instance of Y. Then (r X Y) ia called the
dirnengion of (r x y)". This dimension may have a consistency condition (2 lagical res-
triction) associated with it in the knowledge base K[U]. This consistency condition may

"in general have one of three forms:

(2.5 [(rxy) we exp],
2.6, [(r x¥) s exp), or
[2.7). [exp oz (r x y)]

where exp is a logical ezpression without modal ezpressions, in whick x and ¥ appear as
the only free variables. The variables are interpreted as being universally quantified.
Exp will state the logical restrictions on the atom (r x y). The way Q gets augmented
will depend on whether the consistency condition associated with the dimension (rX7Y)
is of the type [2.5], [2.6] or [2.7] above. For an atom that appears on the right side of a
problem sequent, the three cases are shown in table 2-V by the first three inference rules.
The last three show the rules for an atom on the left side. Cases {2.5] and [2.7] bave
identical effects: Q is simply replaced in the frontier set, ¥, by the sequent shown on top
of the inference rules. In case [2.8], Q is replaced by the two sequents on top. The infer-
ence engine will keep track of the augmentation done in this manner to make sure that
no sequent gets augmented twice for the same atom. 1 will refer to this process of
retrieving conditions from K[U] as the KB-lookup process. The KB-lookup process is

used to interpret all the restrictions associated with the dimensions in K{U].

I have not discussed above all the tasks performed in the KB-lookup procesal. The
retrieval of all the information pertinent to a given (r x y) may involve more work than
what has been described above. In general, an atom may contain terms, ([ ...), or terms
like ‘(father-of x)', ‘(grandfather-of x)', etc., instead of containing only variables. These
terms should be given proper interpretations during the KB-loockup process. Also
dimensions (r X Y) may have a restriction that specifies an upper bound and a lower
bound on the number of distinet instances, y of Y, to which a given instance, x of X,
may be related to via r. Thus, for example, by placing a (1, 1) after the dimension one

may indicate the uniqueness of the relationship between x and y. 1 will not present here

*» The ideas presented here on dimensions and consistency conditions are discussed in greater detail in sections 3.3, 3.4
and 4.1 .
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TABLE 2-V: RULES FOR PROBLEM AUGMENTATION.

CC-type | Inferexce Rule for Augmentation.
e = oy (F X F), @XPy oee

= o {PXT)

ey 8P — ., (P XY), s

2.8] e = o {PXY) s

e (EXY), e

= ., (rxYy), exp, ....;

(2.5]

2.7

(7] o=y (P XF), s
(P XY), XPy oo = r;
w (E XY e =
m(rxy), exp, o — o ;

2.6] (rxy), exp

(P XF) e =

i T XY), e —
7] | e expo

e (P XY,y e = e ;

the full details on these. Some of them are illustrated later in this subsection.

After modifying each Q in the frontier set, F, in this manner the axiom test will
now be performed on each Q. Let Q1 be the sequent in F on which the axiom test was
first done. If this test resulted in reducing Q1 to an axiom, then Q1 will have a match-
ing pair of identical offspring on either side of —. Also, this test might result in the
introduction of other offsprings in other sequents that axist in F. Let F be the subset
of F which were thus changed.

If during the axiom test new constants were created then each such new constant
will be instantiated in the world state, taking care that it satisfies the appropriate range
restriction specified in the sequent. If all the arguments of an offspring, A, resuliing
from the mating in QI, are constants (such an atom is called a groended atom), and the
same offspring appears on both sides of a sequent in ¥, then A will be asserted into the

world state.

These assertions and the creation of constants will result in the creation of a new
world state. The context of this new world state will be F,, the subset of sequents in F
which were changed by the axiom test. If all the assertions and the creation of constants

are unconditionally acveepted in the new world state theo the axiom test performed on
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-

Q1 is considered to be successful and the proof process is continued.

If they are conditionally accepted, then the modeling system will return a logical
expression, say C, which expresses the condition under which the modifications per-
formed on the world state will be acceptable. € will represent the information in the
world state that is relevant to the problem being solved, but is currently unknowﬁ in the
world state. The system will now assume C as a hypothesis, by intreducing the prab.
lem,

[Qul: — (ACHIEVE C) ;
as & new problem into the set H[Q1], the set of hypothesis problems associated with Q1.
The world state of Q,, will be the new world state associated with Q1 after the
modifications. Also, Q. will have the same bindings, assignments and substitutions
associated with it as Q1. This hypothesis problem will also be added to the frontier set
F.

If the new world state has a contradiction iz it then the axiom test is considered to
have failed. In this case either another possible mating in Q1 will be attempted, or the
problem solving system will backtrack to a previous problem state and continue the

deduction..

The problem solving process will terminate when it encounters a frontier set of
axioms. In this case the problem is said to be unconditionally solved. At this point each
axiom, @, in the frontier set will have a world state associated with it. Each distinct
world represents a solution to the root problem. If one or more of the hypothesis‘ prob-
lems remain unsolved, then the problem is said to be conditionally solved under the
condition that the hypotheses are true, User will then have the choice either to continue
the problem solving process to solve the hypothesis problems or terminate the process at
that point. If any of the problems lead to a contradiction in the world state for all pos-

sible choices of matings then the problem is not aclved.

This modified mating algorithm achieves four purposes:

1. It uses the knowledge base to augment the problems with information per.
tinent to the sclution of the problems.
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2, It uses the offaprings produced by the matings to update the world state and
check the consistency of the matings themseives,

3. It identifies the set of hypotheses under which the solution holds true.
4. It produces the world states associated with the frontier set of axioms. these

world states will represent the solutions to the problem.

I have here introduced an additional condition for a mating to succeed, the
offsprings produced by a mating should not canse a contradiction in the world state.
This additional condition will certainly preserve the canm:atency of the proof process
described above (i.e. if a proof terminates successfuly then.the root problem s valid).. .
But to assure completeness {i.e. for the proof process to terminate successfuly for every
_valid sequent), clearly the specification of K{U] should be complete in a well defized

" sense. The concept of completeness of K[U] is captured by the condition of locality

deacribed below and further claborated later in section 5.

The locality condition is expressed using the concepts of relation paths and conirad-
ictions: A list of relation names, (r, r, .. r), is said to be a relation path in a world

state iff there exist constants ¢,, €y, vy Crpyyy such that
[(1'1 cy Cg) AND (r, ©, ':s) AND ... aND (T, l‘cn c(n+1))]
is true {or unknown) in the world state. In this case we shall say that
{e, (r, Py oo 7L) c(H.l))

is true (or unknown) in that world state. The introduction of a new literal L, into a
world state,
L

L, = Either (r ¢, d,) or (nor {r'¢, d,)),

where ¢, and d, are constants, will cause a contradiction in the world state if the follow.

ing is true in the new world state obtained after the introduction of the literal:
{(L, narrims L,) anvp (nor L),

where L, is another literal in the same world state,
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L, = Either {r* ¢, d,) or (nor (r° e, d,)).

In this case we shall say that L, contradicts L, in the world state. The {ocality condition
may now be expressed as follows:
Locality Condition: If L, contradicts L; in a world state U, then there is a

relation path (r r, ... r ) such that (d, (r, vy ... p)c,)is true in U..
The satisfaction of this condition by K[U] is relevant to.the retrieval of all the logical
conditions that sre pertinent to a given set of modifications performed on the world
state. The condition in effect says that if two literals can potentially contradict each
other in a world state, then they should be related to each other in some way (either
directly or via a relation path) in K[U]. Thus K[U] is required to capture all potential

relationships that exist in the universe. 1 will comment on this further in section 5,

An important property of the inference rules displayed here and later in section 2.9

-is that the rules can be rup both ways, from bottom to the top as well as from the top
to the bottom, i.e. starting from a set of axioms one may apply the rules in the reverse

order to conjecture the theorems that give rise to them. In fact this is the way Gentzen

viewed the system he proposed. Tlhe significance of this is that one may use CK.-LOG

also as a theory forming system to form theories of situations that exist in a world state.

" In prineiple, this feature gives CK-LOG a capability to learn general priociples from

given specific situations, This problem needs further study.

Let me now illustrate the process described above by considering again the father-
g‘ﬁndi’ather problem. The universe of this exampie is described by the concept, PERSON,

shown below: .

Structure: (father-of PERSON PERSON), 1, Jrreflexive
(grandfather-of PERSON PERSON), 1

This says that every person has exactly one father (this is stronger than the condition
specified by E2) and the father relationship is irreflexive. This captures the meaning of
both expressions E1l and E2 presented in the lasi subsection. The condition of the

expression E3 may now be stated as a restriction on the grandfather-of relation, as fol-

lows:

{{father-of (father-of parson) x) mMPLiEs (grandfather.of pamon x)).
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This is a type {2.7] restriction. The problem to prove is,
— ({(EVERY x PERSON)(EXISTS y PERSON)(grandfather-of x y)} ;

The sequence of deductions on this problem is shown in table 2-VI below. In each row
of this table the last column indicates the rule(s) applied to the sequent in the row, to

get the sequeni(s) in the next row below,

TABLE 2-VI: THE FATHER-GRANDFATHER PROBLEM.

Problems Sequents Rules Used.
P — ({EVERY x PERSON) [~ U] '
: (EXISTS y PERSON)(grandfather-of x y)) ;-
(ulell € PERSON) —
[P2] | . [~ E]
({(EXISTS y PERSON)(grandfather-of ulcll 3} ;
(ulc1] € PERSON) — (eGx1j € PERSON) ; JKB-lockup]
P3| (ule)) € PERSON) — (grandfather-of ulell eGx1j) ;
Binding: ¢Gx1j = (FEG ulc11). - grandfather-of
(ulell € PERSON) — {¢Gx1j € PERSON) jKB-lookup|
[P4] {ulc11 € PERSON) — (grandfather-of ulcll eGx1j}). father-of

(father-of {father-of ulell) eGxlj) ;

(elcil € PERSON) — [eGx1j € FERSON) ;
{(ule1l € FERSON), (father-of ¢11 ¢22) — [KB-lookup]
(grandfather-of ulell eGxlj),
(father-of (father-of ulc11) eGx1j), (father-of ¢22 eGx1j) :

ulell € PERSON) — (eGx1j € PERSON) ;

{ulc11 € PERSON),(father-of ¢11 ¢22),(tather-of €22 ¢33) —

P8 {(eGx1j € PERSON), (grandfather-of ulell eGx1j). {Axiom-test]
{father-of {father-of vlc11) eGxlj), (father-of c22 eGxl1j) :

Assignment: (ulell — ¢11).

{¢33 € PERSON), (ulcll € PEHSON) —
(eGx1j € PERSON), (¢33 € PERSON) »

{ule1l € PERSON), (father-of ¢11 €22),(father-of c22 ¢33) —
(eGx1j € PERSON), (grandtather-of ulcll eGxlj),
(father-of (father-of ulcll) eGx1j}, (tather-of c22 eGx1j).
{father-of ¢22 ¢33), (grandfather-of cl1 ¢33) »

Assignment: [eGx1j + x13], [xI3 +— ¢33

Substitution: [eGx1j/x13].

[Ps]
father-of

[P}

Sequent {P2] results directly from the application of {— U} 10 {P1)], and {P3] results
from the application of [— E] to [P2]. At this point KB-lookup is done for the
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grandflather-of relation resulting in [P4] as per the inference rule for type [2.7] conditions
shown in table 2-V. Notice that when the condition associated with the grandfatherof
relation is retrieved from the knowledge base the system makes the appropriate variable
substitutiona in the expreasibn. At this point a second KB-lookup is done, this time for
the father-of relation. The term ‘(father-of ulcll)’ appearing in this relation will cause
the system to look for the father-of the constant ulcll in the world state. But ulcil has
not been yet created. Since ulcll is a universal instantiation variable, this will cause the
system- to create a new-instance-of- PERSON, -say cll, assign-it to-ulcll and- record: the
assignment, When the system now looks for (father-of cl1) in the world state it will
notice the restriction, ‘1°, placed on the dimension ‘(father-of PERSON PERSONY. This is
interpreted as saying that every PERSON has a unique father. This will cause the system
to create another person, say ¢22, and assigﬂ c22 as the father of ¢11. It could not
agsign cll as the father of ¢l1 because the father-of relation has been declared to he
irreflezive. This will result in the sequent [PE]*. At this point another KB-lookup is
domne, this time for the ‘(father-of ¢22 eGx1j)’. This will result in the sequent [P6]. The

performance of the axiom test ou this sequent will conclude the proof with {P7] in the

- table,

2.7. Assertions to World State Models,

Copstants are created in a world state by the assertion,

(ASSERT (inslance-of range c)) — ; or
(CRI ¢ rangs) — ;

where range specifies the range restriction on the constant ¢. CRI (CReate Instance) is
one of the TMS commands. By convention this command may appear only on the left

side of a sequent (ASSERT may appear on either side). A CRI expression appearing on

* In geperal, a literal Yt {v1 x) y)' is interpreted as {{ENISTS = ZX|rd x z] AnD |r v y|))," where 2 in the range of 2. The
standard way to analyze a literal with embedded terms like this i to replace the literal with its equivalent Jogical ex-
pressien in the sequent, and bhen procesd with the analysis of the medifed sequent, There are, however, a lew apecial
cases where, the series of inference steps implied by this general method, may be cut short. The case illustrated above
s one of these apecial casen, Here the (father-of FERRON PERSON)' relation had oo general logical restrictions associated
with it ether than those specified by the Bage ‘1, srreflezive’. The processing of the ipterpretations giver to fags like
these give nize to the various zpecial cases. Ii in not bard to verify that the short cot presented abave wilt in every
cake produce the same result as the general process for the universal jnatantiation variable uicll, and for the restoc-
tiopa specified by the fags ‘1, srreflezive’. :
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the right side has no interpretation. The offaprings generated in an axiom test are

asserted by using the ASSERT command,

(ASSERT (offspring, , offspring, , ..., offspring )) — ;
The inference engine will pass these commands directly for assimilation by the truth
maintenance system. ASSERT statements on the left side of sequent, like the one
above or more general ones discussed later in section 2. 8, are the analogs of L.evesque Y
TELL operator. An ASSERT statement on the right side has a different iuterpretation.

It is interpreted as ap attempt to conclude a proven (or a hypothesized) assertion as_

explained below.

— (ASSERT (offspring, , offspring, , ..., offspring )) ;

will be asserted into a world state only if for each atom in the ASSERT a
matching atom can be found on the left side of the problem sequent, separated
by commas from other expressions in the sequent.

In general, the argument of an ASSERT expression may contain both positive and

negated atomas (literals).

For a negated atom appearing as an argument of an ASSERT expression on

the right gide of a sequent, the negated atom will be introduced into the world

atate only if a matching atom without the negation also appears on the right

side, separated by commas from all the other expressions on the tight side.
If matching atoms do not exist in a sequent for the arguments of an ASSERT expression,
then CK-LOG will present to the user the list of unmatched literals. If the user forces
the assertion, then CK-LOG will enter the conjunction of the forced assertioms as a
hypothesis problem associated with the sequent. If the assertion contained unbound
generalization variables then the system will attempt to bind them using the constants
that exists in the world state associated with the sequent. If no such constants are avail-
able in the world state then user will be prompted to confirm whether new constants
ought to be created to satisly the asserted conditions. Universal generalization variables
are interpreted as indicating that the assertion should hold for all the bindings in the

world state over which the variables range, and existential generalization variables are
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interpreted as indicating that the assertion should hold for one or more bindings in the
world state over the range of the variables. If unbound instantiation variables oceur in
an assertion then there would be in the assertion also commands to create new bindings
for them. Otherwise the assertion cannot be executed. Assertions are made into z world
state ouly after an attempt has been made to bind the variables that oceur in the asser-

tion. Some examples of assertions are discussed in section 4 and in [Srigivasan 1884].

If the argument of an ASSERT expression is itself a complex logical expression,
instead of literal, then CK-LOG will use its inference engine to break the logical expres-
sion down to its components and find the appropriate assertions that it should make in

the world state, The inference rules for this are stated in section 2.9,

2.8. The Action Calculua of CK-LOG.

The use of CRI and ASSERT will occur in the communication between TPS and
TMS only if there are ne actions involved in creating a constant in the world state or in
making an atom true in the world state, or a user had suppressed the invocation of
‘actions. If actions are involved then the CREATE expression is used to introduce
offsprings into the world state, or to create new constants in the world state. CREATE.
expressions are the standard oues used by TPS to make assertions into world states.

They are presented to the inference engine as a problems to be solved:

(CREATE (c € range)) — ; or
(CREATE <conjunction of offsprings™) — ;

The inference rules used by the inference engine for interpreting modal expressions like
‘the CREATE expression above are discussed in the next subsection. These rules ulti-
mately reduce the modal expressions to a set of actions that are needed to make the
expressions true, and ASSERT these actions into the world state. A new action will get
created in a world state by the instantiation of a variable, elc or ulc whose range is a:
ACTION. Suppose X was an instantiation variable elc or ule, and action is the pew
instance created and bound to x. Then TMS will update every sequent, Q, in the fron-
tier set in which the variable x appears, with the following action predicates, [AP), by

adding these predicates to the left side of Q!
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[AP]: {(before (time-of (status-of action suceessful)))
(value-of {function uction))],
{(before (time-of (value-of (function sction)))
(value-of (behavior action))],

where value-of is a function that returns the value of the term in the current world
state’. The solution of these problema will asaure that the intended creation of the con-
stants apd asserted literals is accomplished. If several actions are created by a parallel
assertion, then the solution is considered successful only. if the action predicates for all
the acticas suceeed. Thix is indicated by associating a special flag (llwi!l use flags §1, $2,
etc. as flags to indicate this parzllel success requirement) with the predicates that have
such a :pecial requirements. 1 will refer to this flag as the parallel predicate flag. Thus,

in a problem,
[AP1], [AP2), ... — ... ;

it is quite possible that the problem terminates successfully with the realization of [AP1}
alone (we will encounter snch an example in section 4). If the same special flag is pot
associated with both [AP1] and {AP2] then normally one could terminate the problem at
this point. But, il both [AP1] and [AP2] have a common parallel predicate flag then the

problem solution will be continued until {AP2] is also successful.

4

In general, the analysi.s of a modal expression by the inference engine may result in
the creation of actions that are needed to make the expression tree in a future world
state. The actions so created will result in augmenting the sequents in the frontier set of
a deduction tree with action predicates with or without parallel predicate flags. CK-
LOG’s action colculus is defined by the proofs generated using these action predicates.

An example of this calculus is discussed in section 4.

&« It abould be poted that this i pot the only peossible way ta npdate the seauepts in the froptier rot. Different formuls-
tions are possible for the action predicate, It ia not clear to me yet whether there iz & geperad formnlation for the ac-
tion predicate that is most advaoiageous for the representation of actiont 2nd reazoving abext them. If one copsiders
world states with only ome action at a time then the kind of action predicate that one chooses dosr vot make much of
a difference. If more than one artion could exist ih 3 world state at a titoe, then coey abilicy to sizultaneously moni-
tor multiple actiona will be detertnmed by the Xinds of actiop predicates that ooe yres. More experience with different
kinds of atticns i necessary before the nature of this problew is better sndersteod, The predieace shown here is ade-
quate for our purposes here.
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In these action predicates the function of an action plays the role of post conditions
that are usually associated with actions in sitwation colculus [McCarthy 1989]. The
preconditions for actions may occur in its behavior statement, in the logical conditions
associated with the creation actions, and in the logical conditions (consistency condi-
tions) associated with the relations that are used to describe the actions. The use of the
literal ‘(status-of action successful)’ in [AP] above gives ome opportunities to define logical
restrictions specific to an action instance. These will apecify the conditions for the suc-
cessful termination-of -an ACTION,.in.addition. to the.general conditiona.apecified by the - . -
Junction and behavior of ACTION. l -

The inference rules used for analyzing modal expressions, that use operators like

ACHIEVE, CREATE, DESTROY, etc., are discuased in the next subsection.

2.9. The Specialized Inference Rules.

I will present here the inference rules for a representativ;e sample of operators used
in TML®. The rules are presented below following the convention established in tables
2-1 and 2-11. Unlike the rules presented in table 2-1 and 2-I}, each inference rule
presented here has a condition associated with it. This condition is called the invocah'nﬁ
condition. A rule may be invoked in a theorem proving process only if the invocation

condition associated with it is true in the world state at the time of its invocation.

Bold items in the rules refer to rireta-syntactic functions or patterns. Thus for
example in the first rule, namely the achieve-elimination rule, ‘value-of' refers to the
meta-syntactic function which returns the value of its argument in the world state at the
time the rule ia applied. If the value is undefined in the current world state then it will
return the value-of expression itself as its value. ‘Term’ is a syntactic pattern that
stands for a function term, sexp denotes a simple logical expression with or without
operators but with no time parametera, and (tm-term exp) denotes a timed expression
where tm-term is the term that specifies the time, The pattern, exp, is used to denote
an expression which may or may not be a timed cpe. Finally, atm-sexp denotes z

untimed literal, and atm-exp denotes a timed or untimed literal. Each rule is followed

# In the inference rules presented in thiv section [ have not indicated Lhe presence of Skolem fungtions Lhat apecily
dependencies between existential and wniversal variables. Throwghout this section it is to be yoderstood that ap-
propriate Skolem funciione arc generated at the time of rule application, wherever necessary.
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by a brief comment.

In all the inference rules the top statement may be viewed as defining the meaning
of the bottom one. The way these rules are used in the action caleulus of CK-LOG is

-1llustrated by the example in section 4. Let me begin with the achieve elimination rule.

"TABLE M-I: Achieve Elimination Rule.

Name Condition Inference
IACH.EL| T (CREATE (value-of term))
(ACHIEVE tarm)-
IACH.RED| T {ACHIEVE term)

(ACHIEVE (ACHIEVE term))

This iz called [ACH-EL] for short. The condition, T, indicates that this rule is uncondi-
tionally applicable. The absence of ‘~+' symbol in the rule indicates that the same rule
applies both to the left and the right side of a sequent: The rule may be applied uni-
formly without regard {0 where the ACHIEVE statement cccurs in a sequent, even if it
occurs embedded in another larger expression. In this sense, the rule is said to be con-
‘text independent. Informaslly, one may think of the above rule as saying that for any
term, {ACHIEVE term) always means, CREATE whatever the value-of the term
denotes in the current world state. Most of the rules presented below are context
independent rules. The achieve reduction rule, [ACH-RED], reduces embedded
ACHIEVE expressions, The rules in the next table are used to eliminate ISTRUE,
ISFALSE and ISUNKNOWN operators. Their interpretation is quite straight forward.

The ISTRUE, ISFALSE and ISUNKNOWN operators are used to query the world
state models. For the ISTRUE and ISFALSE operators, if the requesied information is
unknown for a given atom then TMS will attempt to find a dcj'ault‘ value for it, if any
(as discussed in section 3). It will return F only if the default value also does not exist.
Notice that the rule {IS?-EL| is applied only if (ISUNKNOWN term) is true. If it is true
then it is replaced by T, else it is left unchanged, There is no facility in TPS to reason
with unknown expressions. Thus the UNKNOWN operator will not normally appear in
problem statements. One could use this to introduce defouit assumptions in a problem.
It may be noted that if an expression coutains variables which have oo bindings as yet

specified, then the vajue of the expression in the world state will be ! (unknown), and in
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“TABLE M-TI: ISTRUE, ISFALSE and ISUNKNOWN Elimination.

MName Coudition _ Inference

(value-of term)
(ISTRUE term)

[vor (value-of term))

[IST-EL1| T

[ISF-EL) T
‘ (ISFALSE term)

T

[IS™-EL]| (ISUNKNOWN (value-of term))

‘ . (ISUNKNOWN term). .

{1sT-CR| T (ISTRUE exp)
{(ISTRUE (CREATE exp))
ISTRUE

{IST-DES) T ( (roT exp))

(ISTRUE (DESTROY exp))

And similar rules for [ISF-CR|, [ISF-DES], etc.

this case the [STRUE and ISFALSE operators {or that term will return F, and ISUNK-
NOWN will return T.

The rules in the next table give us a way of eliminating (time-of event) or
(interval-of event) expressions from a sequent. These expressions are called event-time
expressions. There are two cases corresponding to whether the event is true in the
current world state or not. The meta-syntactic variable, event-rel, stands for ‘time-of
or ‘tntervel-of, and the variable time-rel, stands for ‘after’, ‘before’, ‘during’, ‘between’
or ‘at.’ It may be noted that ‘during’ and ‘between’ relations will appear only with inter-
vals and so also, ‘at’ will appear only with time instants. ‘Before’ and ‘after’ may

appear with both time instants and intervals.

The inference rule, [EVTM-EL1], specifies that if the avent is true in the current
world atate then the event expression may be replaced by the new variable, si-t, w'hoae
value is the time or interval of the eveni. [EVTM-ELZ2] indicates the role of operator
under these conditions. Operstor here is any operator other than ISTRUE, ISFALSE,
ISUNKNOWN and OCCURS. The operator does not operate on the event, but only
on the exp. If the event is not true in the current world state then the two cases are
indicated by [EVTM-EL3| and {EVTM-EL4]: Here the event implies the exp with the

indicated time relations hips.
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TABLE M-TII: Event-Time Elimination Rules.

C. V. Srinfvasan

Name Condn. Inference, Bindings
[(time-rel eist) exp] (ei-t =
EVTMELY | (PTRVE (value-of
event) - | [(time-rel (event-rel event)) exp] {event-rel event)))
(ISTRUE | [(t1me-rel ei-t) (operator exp)] {ei-t ==
[EVTM-ELZ| (value-of
svent) [operator {(time-rel (eveni-rel event)) exp]| (event-rel event)))
(morr ([ei-t event) voLms {(time-rel it) exp]) (eint w
[EVTM-EL3] | (ISTRUE (value=of
event)) | ((time-rel (event-rel event)) exp) (avent-rel event)))
(e {{ei-t event) nwmm
|operator ((time-rel ¢i-t) exp)|) (ei-t ==
[EVTM-E14) (ISTRUE (value-of
event)) | (operator {(time-rel {(event-rel event)) exp)) {(event-rel event)))

TABLE M-IV: Time Reduction Rules.

Name Condn. Inference Bindings
[TMR-U] T ({EVERY x (tm-term range))(tm-term exp)) None
{tm-term ((EVERY x range) exp)))
(TMR-E} T ((EXISTS x (tm-term range))(tm-term exp)) Noae
(tm-term ((EXISTS x range) exp)))
BT '
[TMRN] - (vor (bm-tarm exp}) Noge
(tm-term (roT expj)
(TMR-AND T {{tm-term exp-1) A (tm-term axp-%)) Noe
{tm-term (exp-1 aro exp-2))
(TMR-OR] - ((tm-term exp-1) or (bm-term exp-2)) None
(tm-term {exp-1 cr exp-2)) :
(TMR-IMP| - ((tm-term exp-1) maos (bm=term exp-2}) Nope
(tm-term (exp-1 nrums exp-3))
IMRTM] | xm y) D) (x = y)
(x (y exp)}
(TMR-XN]| T (¢tmxn (tm-term-1 (tm-term-2 exp)) None
(tm-term-1 (tm-term-2 exp))
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The binding conditions generated during the event-time rules are used by the sys-
tem to order the time variables, where feasible. The expressions associated with these
time variables are selected in the order of the time ordering of the variables. We will see

an example of this in section 4.

Once the eveni-rel expressions are eliminated from s sequent using the [EVTM-
ELi} rules, the sequent wiil contain only time-rel expressions. These are reduced using
the time reduction rules, TMR-x, shown in table IV. These rules redyce complex time-
rel expressions to combinations of simpler ones. - All of them are-independent of the con--
text of their appearence in a sequent. The first four are, [TMR-U] for universaily
quantified expressions, [TMR-E] for existentially quantified expressions, [TMR-AND] for
conjunctions and [TMR-OR] for disjunctions. As mentioned before, syntactic pattern,

tm-term, stands for & term that specifies time.

The remaining rules shown in table IV reduce embedded timed expressions:
[TMR-TM] gives the condition for replacing (x (¥ exp)) by (x exp), namely that (x = y),
where x and y are either variables or constants (i.e. known time instants). If they are
constants then the rule is applicable only if they are equal, and if x or y is 2y unbound
variable then the binding condition specifies that they should be equal; [TMR-XN]
specifies the rule for reducing arbitrary embedded time expressions. Here, tmxn is the
function that modifies the expression to account for the intersection of the two time
terms in the expression. Thus, for example, (tmxn ({after x)((during ly z)) exp), will be
((during [y z)) exp) if y is after x, ((during [x z)) exp) if y is not after x but z is after X,
‘and NIL if x is after z. tmxn is defined for all possible combinations of time terms.
Note that in general (tmxa (term! (term2 exp)) is not the same as {{terml exp) anp
(term2 exp)). [ will not present here the definition of this function. The rules for

CREATE are presented next in tablea M-Va and M-V,

The inference rules for CREATE may be applied to a CREATE expression even if
it occurs embedded inside another larger expression. All top level CREATE expressions
(those not embedded in other expressions) are retained in a sequent. The rules are
applied to copies of such expressions, introduced into t.hc; sequents before the application
of the rules. The system keeps a record of the expressions in a sequent which have been
thus copied and expanded. This convention applies also to DESTROY and KEEF

exXpressions.
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TABLE M-Va: Reduction Rules for CREATE expressions.

Name Condn. Inference
[CREL-1] | (ISTRUE exp) |- oe-Part-of exp)
{CREATE exp)
(v (ASSERT (create-sction-of patm-exp)) .
[CREL-2] | (ISTRUE
patm-exp)) (CREATE pat-exp)
[CRR-TM}. | T “(CRlEATE (tm-tarm nxpl))
(tm-term (CREATE exp))
[CRR-DNF]| T (CREATE (dnf conjunction))
(CREATE eonjunetion)
|CRR-NOT| T [DESTROY exp)
(CREATE (nor exp))
ICRR-IMP] - (IDESTROY exp-1)| on [CREATE exp-2))
: (CREATE (exp~1 oo exp-2))
(CRR-AND| T (ASSERT (.., [(REATE exp), ...))
‘ (CREATE (..a00 uxp arp ...))
[CRR-OR] T (..on [CREATE exp| cn ...)
(CREATE (..on axp cn ...))
CRR-OP1] . (operator-a exp)
(CREATE (operator-a exp))
(CRR-OP?] T (tmetarm (operator-a axp))
(CREATE (tm-term (operator-a exp)))
[CRR-ASRT] T (ASSERT ((CREATE exp), ..., (CREATE exp)))
(CREATE (ASSERT (exp, ..., axp)))

There are fourteen inference rules for CREATE, two elimination rules, {CREL-ij,
one reduction rule for timed expressions, [CRR-TM), nine for logical expressions (five for
propositional combinations and four for quantifier expressions), and two for reducing
operator combinations with CREATE as the first operator. If an exp is true in the
current world state, then it has already been created. In this case, as per [CREL-1] one

may #imply replace the CREATE expression by (true.-part-of uxp)* in a sequent.

*  The part of the exp -that- evaluator to T wn the world state and which cansed the exp itoclf to have the troth value T.
Thus for example, the true part of (x <My} whep x in falae and ¥ io truc in y, if both are trne then it infxomy), fx»
tyue and y is false then it iz x, #ine it is NIL.
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TABLE M-Vb: Reduction Rules for quantified CREATE eXpressions.

Name Condn. | Inference

(-, {PESTROY (ug-x € range)) on

{CRR-U —] T (CREATE (subst ug-x x exp))], ...) = ;
{-, (CREATE {(EVERY x range) exp)), ...) — ;

= (., (DESTROY (¢i-c € range)) on

|— CRR-U] T (CREATE (subst ul-e x axp})|, ...) ;
— (.., (CREATE ((EVERY x range} exp)), ...) ;

(.., (ASSERT ((CREATE (éic € rahge)),
[CRR-E =] T {CREATE (subst ei-c x exp)))), ...) — :

(-, {CREATE ((EXISTS x range) exgpj), ) — ;

=+ (.., (ASSERT ((CREATE (eg-x € range)),
[— CRR-E] T (CREATE (subst eg-x x exp)))), ...) ;

~+ {., (CREATE {(EXISTS x range] exp)), _}: |

[CREL-2] says that if the argument of CREATE is a positive atomic expression, patm-
exp, and it is not true in the world state then it is to be replaced by the action that is
needed to create it. Here, patm-exp can also be the name of an object or action. If it

is an object then it will be replaced by the action needed to create the object.

The rule, [CRR-TM], says that time specifications may be moved into 2 CREATE
expression, from outside. The rules {CRR-DNF], [CRR-U], {CRR-E], [CRR-AND],
[CRR-IMP], [CRR-OR| and {CRR-NOT] specify methods for decomposing the creation of
complex logical expressions into combinations of ereation of simpler ones. The pattern,
(Ao exp anp ...)" in [CRR-AND] rule refers to a conjunction of expressions, where exp
may be followed on either side by zero or more other conjuncts (thus the pattern can be
simply ‘exp’ itself). Each expression, exp, in the conjunction is replaced by HYCREATE
e.xp)", inside the scope of ASSERT, and the anp connectives are replaced within the

ASSERT by commas.

[CRR-AND] requires that the conjuncts in such a conjunction should  all be
ASSERTed jointly. This is indicated in the rule by the occurrence of the CREATE
expressions nested within the outer ASSERT. Each inper CREATE expression, in this
nesting will be reduced first either to ASSERT expressions or simply to atomic expres-

sions using the appropriate logical rules and elimination rules. This will result in either
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a single assertion containing one or more atomic expressions, or a disjunction of such
assertions. ln each such assertion the atomic expressions are eflectively asserted in paral.

lelinto the world statef. The inner CREATE expressions will get reduced as follows:

If the argument of an inner CREATE expression is a quantified expression they the
quaﬁtiﬁer rules of table M-Vb will be used until the argument is reduced to a conjunc-
tion, disjunction, a negation or an implication. If the argument is a pegation then it will
be changed to a DESTROY expression, using [CRR-NOT]. If the argument is an impli-
cation then'[CRR-IMF} will be used. If it is a disjunction then [CRR<OR] will be used.
If it is a conjunction then it will be first put in disjunctive normal form (dnf). This is
dope by using the [CRR-DNF] rule. The disjunctive normal form expression is a dis-
Junction of conjunctiona. Thus [CRR-OR| rule may be used after [CRR-DNF| to
separate out the disjunctions. This process is iterated until one gesta CREATE expres-
sions consisting only of conjunctions of atomic expressions. [u this process it may often
be necessary to employ the {CRR-OPil, [ASRT-ASRT], [ASRT-OP] and [ASRT-OR]
rules iz table M-VIIIb, to get rid of certain nested CREATE (and ASSERT) expressjons.
[CRR-OPi}, specifies that the creation of an operator-a expression is the same as the
operator-a expression itself, where operatar-s is the same as operator, but excluding
ASSERT. The [ASRT-ASRT] specifies that inner ASSERTSs in nested ASSERT expres-

sions may be reduced to the arguments of the ASSERT expressions.

Table M-Vb shows the reduction rules for quantified expressions. The pattern (..,
quantifier-exp, ...} indicates a form that might appear inside an ASSERT. | have not
shown the ASSERT itaelf in table M-Vb, because | wanted to indicate that the same
rules apply also to the case where (CREATE quantified-exp)’ appears alonme in the
sequent. The expressions (.. € range)’ in this table are the binding conditions. These
conditions indicate the ranges of the variables that are newly generated by the applica-
tion of these rules. Notice that the top expression in the inference of [CRR-U —| may
be viewed as being the result of application of ([U —], [CRR-IMP], {OR —]), in the left

to right order, to the expression at the bottom of the inference, The only difference is

t The probiems associated with the mocitoring of paralled actions bave not been adequately investigated yet. In most
caner they require specialized routines to moaitor parallel assertiona of actions and their behavion. Ng general princi-
plea of orgapization bas emerged yet. | axpect to gain some understanding for the nature of these problems from the
current application deman, samely Maval Operational Flapning. The inference rules presented in this section show
the machinery used ip the inference engine to accommodate parallel menitorng of muitiple actions.
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that [CRR-U —] allows one to apply {U —] to the universally quantified expressions that
occur inside the scope of a CREATE. The other rules in table M-Vb may be similarly

interpreted. These are the guantifier elimination rules for CREATE expressions.

The variables ug-x and eg-x in the rules [CRR-U ~] and [— CRR-E] are the gen-
eralization variables mentioned previously. These variables are used to represent arbi-
trarily selected items from their respective ranges. They must ke new variables, not pre-
viously used in the deduction tree. Similarly, ei-c and ui-c are ezistential and univeraal
inatantigtion variables. These denote distinct constants ‘that -are “(or will ‘be) newly -

inatantiated in the inference process.

The inference rules in tables M-Va and M-Vb together specify the means for elim-
inating the CREATE operators from a sequent. The creation of a complex logical
expression is decomposed to the creation of its simpler components, and the creatjon of
the simplest unit is reduced to the actions that are needed to create it. The important
point to note here is that, in general ([CREATE x] avv {CREATE ¥]) is not the same as
(CREATE (x arp'y)) for expressions x and y.  This is because, even though [CREATE
x| and {CREATE y] may both be-true, taken separately, their joint creation may not be
always true. Thus, for example, one may be able to buy a car and buy a kouse, but may

not have the necessary resources to buy them both.

Similar rules for the DESTROY operation are shown in tables M-Via and M-VIb.
The rules here are ihe dual of the rules in CREATE. For an arbitrary exp (that is not a
positive atomic expreasion), if the exp is true in the current world state, then the true-
part-of the exp is to be destroyed. For a patme-exp, if it is true in the world state
then the destroy-action-of the patm-exp replaces the DESTROY expression, If
Patm-exp is an object then it is replaced by the actions needed to destroy the object.
It may be noted that (DESTROY (x or y)) is not the same as {(DESTROQY x) or (DES-
TROY y)), instead it is (ASSERT ((DESTROY x) avn (DESTROY y))). This indicates
that the actions needed to (DESTROY x) and (DESTROY y) should be created in paral-
lel. '

The destruction of a conjunction, is the same as the conjunction of destructions.
This also is the dual of the situation that occurred for the CREATE expressions, where
the creation of a disjunction was the same as the disjunction of creations. For DES-

TROY expressions, using rule [DES.CNF], #s argument is put in conjunctive normal
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TABLE M-Vla: Reduction Rules for DESTROY exj)ressions.

Name Condition Inference
[DES-EL1] | (ISFALSE exp) (e exp)
| (DESTROY exp)
DESELE| ' {USTRUE (ASSERT (destroy-sction-of patm-exp))
patmueaxp)) (DESTROY patm-exp)
[DES-RED] - (ISTRUE (DESTROY {true-part-of exp)) N
exp) (DESTROY exp)
DES-TRM| T (DESTROY (value-of term})
(DESTROY term)
IDES-TM] T (DESTROY (tm-term exp))
(tm-term (DESTROY exp))
DESONE| | - T (DESTROY (enf disjunction))
‘ ' (DESTROY dfajunctlon}
[DES-NOT] T (CREATE exp)
‘ : . (DESTROY (wor exp))
IDES-IMP| T (ASSERT {{CREATE exp-1], [DESTROY exp-2]))
(DESTROY (exp-1 nan= axp?))
|DES-AND| T ([DESTROY exp~1] = [DESTROY exp-2|})
(DESTROY (exp-1 ap exp-2))
IDES.OR| o (ASSERT (.., (DESTROY exp), ...))
(DESTROY {..om exp cr ...))
IDES-ASRT] r (DESTROY exp) 4w ... a0 (DESTROY exp))
‘ (DESTROY (ASSERT (exp, ..., exp)))

Jorm, (a copjunction of disjunctions). The {DES-OR] rule is always applied simultane-

ously to all the disjuncts in a disjunction.

The rule for [DES-U —] may be interpreted as follows:

[2.8]. (DESTROY {(EVERY x range) exp)) rr
[2.9]. (DESTROY {(EVERY x)([x € rangs| nruss exp)) rr
[2.10]. ((EXISTS x)DESTROY ([x € range| orus exp))).

One gets [DES-U —] by applying ({E —], [DES-IMP]) in sequence to the expression (4.3)
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TABLE M-VIb: Reduction Rules for quantified DESTROY expressions.

Name- Condition. | Inference
(ASSERT
[DES-U ] T (- ”ﬁgﬁ;ﬁgﬁ,ﬁ;’fﬂt exp)), ) — 3
{--, (DESTROY ((EVERY x range) exp)), ...) — ;
- {.., (ASSERT

ESTROY (subst eg-x x mxp)],
I~ DES-U] T ({gREATE (e(g«,-x € -r:‘;::e)])), 9)]] i
~ {.., (DESTROY {(EVERY x range} exp)), ...) ;
{-» (DESTROY (subat ug-x x exp)] a~p
[DES-E —| T [DESTROY (ug-x € rangs)}), ...) — ;
(., (DESTROY ((EXISTS x range) exp)), ...) —

{- (DESTROY (subst ni-c x exp)]|

{— DES-E] T arn (DESTROY (ui-¢ € range)), ...) ;
— {.., (DESTROY ((EXISTS x range) exp)), ...) ;

above, and [— DES-U] by applying ([~ E], [DES-IMP]) to [2.10]*". Similarly,

{2.11]. {DESTROY ((EXISTS x range) exp)) wr
[2.12]. ((EVERY x)(DESTROY ([x € range] aw exp))),

and the [DES-E -+] and [— DES-E| rules are derived from the expression {2 12] by
applying ruies ([U —), [DES-AND)]) and ([~+ U}, [DES-AND]) respectlvcly

Notice that the rules in table M-Vla nses an ISFALSE condition on [DES-EL1] and
ISTRUE conditicn on [DES-EL2| and [DES-RED]. Both ISFALSE and ISTRUE are {alse
then jt would mean that the truth of the argumenis of DESTROY is unknown in the
world. In this case CK-LOG will prompt the user to specify whether the truth of the
expression should Be hypothesized. This kind of jnteraction between the TPS and the
world state models is used in CK-LOG to identify information that is upknown but js
needed for the solution of a problem. This feature is extensively used in the example
discussed in [Srinivasan 1984], leading at times to the creation of intelligence gathering
opérations to get the information. |

*s ‘The rules [E —], {~ El, {OR ~], {— OR|, |~ AND|, {AND —rI, JU —), and |= U] were introduced pravicusly in this
aection jn tables 2=] apd 2-Ii
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TABLE M-VII: Reduction Rules for PREVENT.

Name Condition | Inference
PRE] o ([DESTROY sexp| awo [PREVENT (CREATE sexp))])
(PREVENT sexp)
[PRR-TRM, T (PREVENT (value=of term))
' (PREVENT term)
(PREVENT (tm-term exp))

[PRR-TM| T
‘ (tma-term (PREVENT exp))

(IDESTROY ({before tm-term) sexp)] o
[PRR-AB] T [PREVENT (CREATE ((aft-bef tm-term) sexp)|)

(PREVENT ((aft-bef tm-term) atm-exp))

(IDESTROY ({before tm-term-1) saxp)| aro
[PRR-INT] T . | |IPREVENT (CREATE ({before tm-term-2) sexp))|)

(PREVENT ({dur-bet (tm-term-1 tm-term-2}} sexp))

The reduction rules for PREVENT are presented nexi in table M-VII. Preventing
an expression from becoming true is the same as first destroying its truth and then
preventing its recreation. For simple expressions (i.e. expressions without any time
qualifiers), sexp, this is expressed by the rule [PRR] in table M-VIl. If the argument of
a PREVENT expression is a term then the intention is to preveni the truth of the value
of the term. This is expressed by the rule {PRR-TRM)] in table M-Vll. The rule [PRR-
TM] specifies that tm-terms may be moved inside the scope of PREVENT from out-
side. The reduction rules for timed expressions are stated next in table M-VII in rules
{PRR-AB] (for after, before expressions) and (PRR-INT] (for between and during expres-
sions). The pattern, aft-bef in {PRR-AB] will mﬁtch ‘after’ of ‘before’, and dur-bet
will match ‘during’ or ‘between'. In all cases the PREVENT expression gets transformed
to a conjunction of a DESTROY expression aud the PREVENTIion of its recreation.
Again note that (PREVENT {x or y)) will not be the same as ((PREVENT x) ok
(PREVENT y)).

The important point to note is that PREVENT has a semantics that is quite
different from those of CREATE and DESTROY. Whereas CREATE and DESTROY
are one shot operations, PREVENT requires a persistent action; there is need to prevent

the recreation of the destroyed object. Alsa note that (PREVENT (not exp)) will get
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transformed to

({DESTROY {nor exp)} ano [PREVENT {CREATE (~or exp))])
by the [PRR] rule, and this in turn will get transformed to
(ICREATE exp] avo [PREVENT (DESTROY exp)])

via rules ((CRR-NOT], [DES-NOT]).

Similarly, there are inference rules for other operators as well: Rules for KEEP,
SUPPORT, ete. 1 will not present here the rules for these. Let me conclude this section
with the inference rules for- ASSERT. The ASSERT operator is used to make an
expresaion‘ true in a world state without having to go through its asscciated CREATE
processes, The components of the statement are simply asserted into the world state.
As mentioned previously, the assertion will o::éur unconditionally if the ASSERT state-

ment occurs on the left side of a sequent, and conditionally if it is on the right.

TABLE M-VIlla: Reduction Rules for ASSERT.

MName Condn. Inference and Bindings.
(ASSERT exp)

IASRT-TM] T binding: (ei-t == tm-term),

(tm=term (ASSERT exp))

(ASSERT (value-of term))

[ASRT-TRM| T
(ASSERT term) .
|ASRT-ASRT] T (ASSERT ..., axp, —, exp, ..)
‘ (ASSERT (..., (ASSERT (exp, -, exp)), ..))
[ASRT-OP} T (operator-cd (axp Ao .. 40 exp))

‘ {operator-cd (ASSERT (exp, ..., exp)))
[(true-part-of exp) on {ASSERT (not-true-part-of exp))|
{ASSERT exp) ‘

|ASRT-EL] {ISTRUE exp)

The first five rules in table M-Villa are quite straight forward. [ASRT-TM| in
effect says that the time at which the assertion was made may be ignored in the reason-

ing process. The time of the assertion is however saved in the binding condition in a
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TABLE M-VITIb: Reduction Rules for ASSERT (contd).

In the following the condition 'not-true’' = ‘(nvor (ISTRUE exp)),’
where exp is the conjunetion of the arguments of ASSERT.

(L-nasert (atm-exp, ..., atm-expj) — ;
(ASSERT (atm-exp, ..., atm-exp)) — ;

[ASRT-EL ] | not-true

(R-assert {atme-exp, ..., atm-exp)) — ;

=~ {ASSERT (atm-exp, ..., atm-exp)) ;

(ASSERT (dnf eonjunction))

(ASSERT conjunetion)

(ASSERT {... [(vg-x € range) neum (subst ug-x x exp)], ...)) ~ ;
(ASSERT (.., ((EVERY x range) exp), ...)) — :

— (ASSERT (.., [(ui-c € range) prims (subst ui-c x exp)], ...)} ;
— (ASSERT (.., (EVERY x range) exp), ...)} ;

(ASSERT (... (subst ei-¢ X exp)), (ei-c € range), ...)) —;
(ASSERT (.., ((EXISTS x range) exp), ...)} — ;

— (ASSERT (.., {subst eg-x X exp)), (eg-x € range}, ...)) ;

— (ASSERT (.., ((EXISTS x range) exp), ...)) ;

({ASSERT exp-1] o [ASSERT exp-2])
. |ASSERT {exp-1 cn exp-2)]

(ASSERT (.., exp, ...))

(ASSERT{..amp exp av ...))

(ASSERT {.., ([vor exp-1| on exp-2), ...))

(ASSERT (.., (exp~1 purs exp=2), ...))

|~ ASRT-EL] | potetrue

[ASRT-DNF] | not-true

[ASRT-U =] | notetrue

|= ASRT-U| | not-true

[ASRT-E —] | not-true

{— ASRT-E| | not-true

[ASRT-OR| | not-true

[ASRT-AND| not-true

|ASRT-.IMP] not-true

newlj' genetated local variable, ei-t, for future use if necessary. Since we are not
interested here in analyzing who said what and when, 1 have chosen this simplification.
In [ASRT-EL] the not-true-part-of function will return the part of exp that is not
true in the world state. This is the dual of the true-part-of function mestioned ear-

lier. The rest of the rules in the table need some explanation.

In its simplest form, the argument of an ASSERT expression is a series of expres-
sions separated by commas. As indicated by the [ASRT-AND) these commas are inter-
preted within the ASSERT as anp . Inside an ASSERT, the avp 's may be replaced by
commas. This it called a parallei ASSERT. If all the argnments of an ASSERT are

atomic expressions then for each atomic expression its truth valge is first set in the
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world state to T if it is positive, znd to F if it is negated. Only after setting the truth
values for all the atomic expressions in the ASSERT statement will CK-LOG check the
world state for consistency. Thus, in effect, they are all asserted in parallél. This is
what happens when the L-assert function is executed in [ASRT-EL —| rule. The L-
assert function will return the conjunction of all the atomic expreasions that were sye-
cessfuly asserted into the world state. It will return NIL if the assertion is hot success-
ful. The L-assert happens uncorditionally, when the ASSERT statement is on the left
side of a sequent. -As mentioned before an- assertion may. cause the system to. augment -

the deduction tree with hypotheses problems, or may get rejected,

If it is on the right side of a sequent, then the R-assert function is used. This
function will first check whether the arguments of the ASSERT expreasion satisfy the
watching requirements described earlier. If all the atoms in the ASSERT expression are
matched succesafuly then the agsertion will be performed using the L.assert function. If
matches could not be found for some or all of the arguments of the assertion, then the
system will present to the user the list of atomic expressions for which matches could not
be found in the sequent. At this point the user may either advise the system to reject
the assertion, or ask the system to accept the atoms even though mo matches exist for
them in the sequent. The conjunction of these atoms will then be introduced by the ays-
tem as a hypothesta problem associated with the sequent in which the ASSERT expres-
sion appeared.

{ASRT-DNF] puts the argument of an ASSERT into disjunctive normal form, if the
argument is a conjunction (which can be a series of expressions separated by commas).
Notice that in the rules above the pattern (..,exp, ...)’ indicates one or more expressions,
exp, separated by commas (or anp , or cR a3 the case may be). [ASRT-OR] converts the
ASSERT of a disjunction to a disjunction of ASSERTS. If the argument is quantified
expression, then ASRT-U and ASRT-E are used to climinate the quacotifiers. They
introduce the new variables, ug-x, ui-¢c, eg-x and ei-¢ depending cn the various cases.
The binding conditions specify their ranges and indicate that these were created inside
the acope of an ASSERT statement. These rules allow the quantifier elimination rules 1o
be applied even when the guantifiers are inside the scope of an ASSERT. In [ASRT-
QP] rule the pattern, operator-ed is the same as operator with CREATE and DES-
TROY excluded, I have assumed thronghout that negations will appear only with

atomic expressions.
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Among the rules presented above and those presented im tables 2-1 and 2-11, the
various rules for wor, aND, or, e and F expressions, and the rules for reducing timed
expressions, are called propositional rules. The rules for quantified expressions are called
quantifier elimination rules, In applying a rule to a given sequent there two choices to
be made: The expression in the sequent to which a rule is to be applied, and the rule to
be applied to the chosen expression. The choice of an expression in a sequent moight in
certain cases be determined by the ordering of time expressions associated with them.
TMS has special facilities to order time instants over an after/before lattice. If there are
several choices available for expressions, then either one may be chosen arbitrarily or the

user may specify to the system the choice to be made.

EVENT-TIME RULES
TIME RULES
PROFPOSITIONAL RULES
QUANTIFIER ELIMINATION RULES
AGF[EVE RULES
PREVENT RULES
CREATE RULES DESTROY RULES

/

ASSERT RULES

Figure 2.3: The Order of Application of Inference Rules.

. Once the expression is chosen the rule (set of rules) to be applied to it will usually
be unique. These rules are applied to the chosen exptession in the following order:

First all the applicable event-time rules (table M-I11) are applied, then all the applicable
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time rules (table M«1V) are applied, then the applicable propositional rules (table 2-1) are
applied, then the quantifier elimination rules (table 2-11), then the ACHIEVE rule (table
M-I), then the PREVENT rules (cate should be taken here to prevent endless loop
because of recursion in the PREVENT rules), then the CREATE or DESTROY rules,
and finally the ASSERT rules. This is diagramed in figure 2.3,

In the last three subsections | have presented several modifications to the mating
algorithm presented in section 2.5. The effects of the modifications on the completeness
and consistency of the theorem proving system;  TP3, has not-been .completely amalyzed.
yet. The ASSERTion semantics discussed in section 2.7 does not by itself affeet the

' completeness and consistency of the TPS,. However, the possibility of user introduced
assertions in the middle of a theorem proving process may have unforeseen consequences,
If there are incousistencies in the user given aasertions, then they will ultimately be
detected by TMS as TPS continyes with an expanding deduction tree,

The way the inference rules for other modal operators affect the completeness apd
consistency of TPS would depend strongly on the kind of action predicates that one uses
to monitor and follow the effects of actions in TPS, the way the function and behavior of
actions have been defined, and the facilities available for monitoring parallel actions. At
present | have no guidelines to offer a user on defining these. More experience with the -
use of the system is necessary before one can comment on this.

As 1 menvioned earlier, the interaction between the world states apd TPS is used to
identify and use unknown information in the world state as hypotheses. But if K{U]
itself is incomplete then there is no way of generally predicting what might happen. In
section 5 | introduce the concept of adegquacy of K[U] and propose the locality condition

as a sufficient condition for ita adequacy.
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3. MDS, The Meta Description Syatem.

3.1. An Example of Concept Definition.

Figure 3.1 shows a typical concept definition in CK-LOG*. But for some minor
syntactic differences this is the way one would use TML in CK-LOG to define concepts,
The concept defined here is called MIL-ACTION (military action). MIL-ACTION is a concept
in the sense that it denotes the set of all possible military actions. Each structure
definition in the figure introduces one or-more component sconeepts of MI-AGTION, and ~
possibly also a relation name that is used to indicate the relationship between the parent
coticept and the component(s). The meaning of each of these refations is defined to CK-
LOG in two ways: The first is by the specification of consistency conditions (section 3.4)
which the relations should satisfy in a world state. The second is by the specification of
the actions (section 3.5) needed to make these relations true in a world state (the
create-action for the relation), to maintain its truth (the keep-action for the relation),
or to destroy its truth (the destroy-action for the relation). Let me briefly elaborate

on the significance of the definitions shown in this figure.

3.2. The function, behavior, analysis and design of MIL-ACTION.

Let me begin with the function, behavior, deaign and analysis of MIL-ACTION. The
function in figure 3.1 uses the operators, ACHIEVE, ISTRUE and PREVENT. Let me
briefly explain what these operators refer to and what they mean (the inference rules for
these were discuséed in section 2.9). (ACHIEVE (execution-of mil-action)) refers to the set
of processes that may be invoked to perform the said executions. It will be true in a
world state when all the processes involved in the execution terminate successfuly in that
world state. (ISTRUE (objective-of mil-action)) declares that the objective of the action
should be true in a world state. {PREVENT (purpoa?-of mil-action)) refers to the
processes that might prevent the achievement of the purpose-of the mil-action, and (ot
{OCCUR (PREVENT ...))) says that these processes should not occur!. The expression

‘(time-of (ACHIEVE (execution-of mil-action)))’ refers to the time instant when the

* The axample presented here is taken from the GFPLAMGONGILTANT, {Srinivasan 1084]. 1 am uning thia example here be-
eanpe it illugirates datails of knowledge definition not covered by the sxample dincuseed in section 4.

t "OCCURS and *OCCUR' are synonymous words. | am using both of them bere for betver readability.
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(ACHIEVE (execution-of ...)) becomes true.

The function in figure 3.1 may now be paraphrased as follows: At the time the
execution-of the mil-action is achieved (i.e. completed successfuly), its objective should be
true and its purpose should not be prevented.'® Notice that this function definition
does not specify when the execution itself should be performed, This is specified in the
OPPLAN definition: the execution of a milaction will commence only when the status-of
its OPPLAN becomes active, CK-LOG will use function statements like this to set up goals
for itself inits problem svlving: activities, ~“When a mikaction-is -tnstantiated CK-LOG will
update the left sides of the relevant sequents in the frontier set of its deduction tree with
the action predicates,

[3.1]. [(before (time-of (status-of mil-action suceessfyl)))
(value-of {function mil-action))],

[(before (time-of (value=of (function mil-action)))
(value-of (behavior mil-action))],

to achieve the function and behavior of the action in the existing world state. If CK-
LOG is not able to perform the necessary modifications in the world state, then there is
something wrong with the action, either it should not be terminated or something else

should be done depending on what the user decides.

Function and behavior (as also the analysis and design) definitions like these may
also appear with concepts that are not actions. Thus one may have a function for the
concept OPORDER, an operational order. Its function might say that the commander

‘ receiving the oporder should start planning for the military actions assigned to him scon
after he receives the cporder. In this case the funetion of an oporder will be invoked to
meodify the appropriate sequents in the frontier set of a deduction tree, everytime a new

OFPORDER is created in a world state, and the analysis of this fupction would initiate the
necessary planning activity.

The behavior of a MIL-ACTION shown in figure 3.1 makes a general statement about
what happens in 2 mil-action. Here int is a time INTERVAL that is specified by a pair of

#a It ghouid be noted that an axpression of the form, ‘[(time-of x) ¥I' (or ‘[{after {tima-of x]) y|') whore x and y are logical
cxpremsinna, establisher a coural conmection batween the statements X and y: Making x true should cause ¥ to become
true at the same time (or after that time). In any such causal connection the logical zssertion *{x LIS ¥|' will be
truc. But, the cansal assertion makes a stronger statement than the implicational axsertion, because it also specifies a

time refaticnzbip.
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Structure;

Funcition:

Behavvor:

Analysia;

Design:

(MIL-ACTION FORCE FORCE REGION)
(prosecuted-by MIL-ACTION FORCE), 1
(is-against MIL-ACTION FORCE), 1

(region-of MIL-ACTION REGION), 1

(ordered-by MIL-ACTION OPORDER), 1
{specified-by MIL-ACTION OPORDER-TASK), 1
(objective-of MIL-ACTION MIL-OBJECTIVE), 1
(Purpose-of MIL-ACTION MIL-OBJECTIVE), 1
(mil-plan-for MIL-ACTION OPPLAN), 1
(commander-of MIL-ACTION COMMANDER), 1
(Phy-objectives-of MIL-ACTION OBJECTs); 1"
(supports MIL-ACTION MIL-ACTIONS), Irreflezive
{opposes MIL-ACTION MIL-ACTIONs), [rreflezive,
(execution-of MIL-ACTION MILA-EXECUTION), 1
(status-of MIL-ACTION MILA-STATUS), 1
(risk-factor-of MIL-ACTION RISK-FACTOR), 1

((tirne-of (ACHIEVE (execution-of mil-action)))
(ISTRUE (objective-of mil-sction)] anp
[Mor (OCCUR (PREVENT (purpose-of m:l-nctmn)))])]
[((EXISTS int INTERVAL)
{({during int{MIL-ACTION x y region)) IMPLIES
((EXISTS force FOREE)
((between int)
(JOCCURS (DESTROY force)] anp
{(belongsto foree x) ok (belongs~to fores y)]))]
OR
[(EXISTS r1,r2 (is~within region))
((between int) ((controls x r1) axp (controls y r2)))))
AND
{{during int)
(OCCCURS (ACHIEVE (axecution-of mil-setion))))]]

[ACHIEVE (execution-of mil-action)]
[ACHIEVE (deaign (mil-plan-for mil-action))]

¥
Figure 3.1: The Concept of Military Action, MIL-ACTION.

TIME points, (t, , t,). The statement says the following: If there is an inc during which

(MIL-ACTION X ¥ regien) is true, for any X, y and region, then there are DESTROY

processes against FORCEs belonging to x and y that will OCCUR between the time

points of the same int, or there will exists REGIONs within region that are controlled by the

participating forces x and y between the same time points, or both of these will oceur (or
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is inclusive or). The expression, ‘(during int)' is interpreted as ‘for all time instants, ¢, in
the semiclosed interval, ft, , t,)", and ‘{(between int)’ is interpreted as ‘there exista time

instants, t, in the open interval, (t, , 1),

The DESTROY operator may operate on instances of concepts, like l‘arce above, or
on loglcal expressiona containing particular or gemeric instances of concepts. When it
Operates o an instance, it refers to the processes, P, that’ might be needed to destroy,
Le. make false, all or an a priori specified aubsct of the properties of the instance, When
it operates on a logical expression, it refers to the processes; P, that might-be- peeded 1o -
make the expression false, It will be true (become true) in a world state if the apecified
properties are (become) false in that world state. If the specified properties are not false
and P is not NIL then the truth value of (DESTROY .-.) will be ? apd that of (OCCURS
(DESTROY ...)) will be T, because the processes, P, are occurring. If P is NIL then
(OCCURS (DESTROY ..J) is F. If the specified properties are not false and P is NIL
then the truth value of (DESTROY ...) is F. Notice that (DESTROY ...) may be true in
a world state {because the specified properties are false) while (OCCURS(DESTROY ...))
is false (because P is NIL). Similar considerations apply also to CREATE, ACHIEVE
and other operators used in this paper; these will attempt to make the specified proper-
ties true. ! will say more on the OCCURS operator in section 3.4.

It may be noted that the behavior statement in figure 3.1 does not say that there
"should pecessarily be destruction of FORCEs: (QOCCURS (DESTROY force)) simply says
thatr DESTROY processes against foree oceurs, The DESTROY processes may not
succeed: If the processes siart.ed by DESTROY all terminate without making the
specified properties false then destruction wonld not have occurred. The use of
‘between’ instead of ‘during’ indicates that the DESTROY processes need not occur all
through the int. Similarly, the use of ‘between’, in the statement about regions con-
trolled, aliows the regions controlled to change at different times in ti:e int. Thus the
bebavior statement is a very general statement that captu,reé the pature of a MIL-

ACTION: In all world states, if a military action occurs then this is what one may expect.

Behavior statements like this are used in CK-LOG to analyze the behavior of

actions in a world state. In a planning environment these may be used to anticipate the

contingencies which should be accounted for in its plana, or to plan the destruction of an

action. The above behavior statement may thus be used by the system to set up
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planning subgoals to protect a commander’s forces as a part of a military planning pro-
cess, since it knows that every commander has to keep his forces operational and to keep
them operational their destruction should be prevenied. The standard way of destroying
an action in CK-LOG is by destroying its behavior, i.e. by making its behavior false in a
world state. As mentioned before, everytime a new instance of an ACTION, S3Y action, is
created in a world state, the bekavior and function of the action are used to update the

goal set in a problem solving process.

The analysss: definition- declnr-gs -that .a. military. action-is analyzed ‘by-analyzing the: -

way it achieves its execution. Thii;, to analyze a mil-action one would set up the subgoal,
(3.2]. - (ACHIEVE (execution-of mil-action)) ;

or the inference engine will transform the subgoal,
(3.3].  — (ACHIEVE (analysia mil-action)) ;

to subgoal [3.2] above using the analysis definition of MIL-ACTION. Similarly, to design a
wilitary action the plan for the dction should be designed (see {Srimivasan 1984) for-
details on how plans are designed). Let me now present the interpretations given to the

structure definition shown in figure 3.1.

3.3. The ltructuré of MIL-ACTION.

The first structure definition in figure 3.1 is the tuple,
(MIL-ACTION FORCE FORCE REGION).

This declares that a MIL-ACTION always involves twe FORCEs and a REGION, where ‘
FORCE and REGION are also concepts in the universe U. These are the components that
give a MIL-ACTION its unique identity: two military actions are different if and only if at
least one of these components is different for them. Having made this declaration one

may now use in CK-LOG expressions of the form,

(t-exp (MIL-ACTION force, foroe, region)),
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to denpote the occurrence of a military action between the particular FORCES, force, and
- force, in the REGION, region, at the time instant (or time interval) specified by the time-
expression, t-exp. The entire expression shown above is a proposition in the language
DL, i.e. it will have § truth value, T (¢rue), F (false) or ? (unknewn), in world states, U,
I will refer to expressions of this kind, with or without negation, as timed literals”. If
the truth value of the above timed literal is T then it would mean that a military action
between the said forces is occurring at the time in the said region, if it ia F then it is not
occurring, and if it is ? then-it.is not known-whether. it 1s;occurring -or not: ..If. no time
parameter is given then the expression refers to its truth value in the curient world
atgte. Notice that the concept MIL-ACTION has been used here also as the name of the
predicate that refers to its occurrence. This is a standard practice followed for ACTIONs
in CK-LOG.! |
A t-exp is either a time instant, t, or an interval, {t, t,), or an expression of the
form (at t-exp), (after t~axp), (before t—gxp), (during t-exp), (between t-exp), (time-af

event), or (interval-of evens).

The remaining parts of the structure definition enumerate the components of a

MIL-ACTION and show how they are related to it. Thus for example, the structure
(prosecuted-by MIL-ACTION FORCE)

declares that FORCE is a component of MIL-ACTION, and it is related to MIL-ACTION via

the relation name, ‘prosecuted-by’. In CK-LOG, this specification is interpreted as say-

ing that a MIL-ACTION is prosecuted-by at most one FORCE. However, we need to specify

that there should be a unigue FORCE. This is done by the declaration,

{prosecuted-by MIL-ACTION FORCE), 1

shown in figure 3.1, where a ‘1’ appears after the comma. The ‘1’ here is interpreted as

. A neﬁud timed literal will have the form, {Not (t-exp ...))'. A litetal or a timed literal may also have variables in
them instead of constanta as shown above.

t This may be uoed for any concept. The tuple asociated with 3 copcept will specify the sufficiency condition for two
inatabees of Lhe coneept, at the same time inatant, to be distinet.
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specifying that there should be a¢ least one FORCE, These two restrictions together
imply that there shouid be exactly one such force.

Having made this declaration, one may use the term, (pmaecuted by MIL-ACTIDN)’
in the language DL to dencte the concept, FORCE:

(prosecuted-by MIL-ACTION) == {FORCE}.

Fo; a particular MIL-ACTION, 32y mil-acticn and ‘- particular FORCE, say force, the timed:
literal

(t—ﬁxp (Prﬂsecuted*by mil-action force}), .

is an atomic proposition in the language DL. Its truth value in a world state U, will be

T (i.f it is true), F (if it is false) or ? (if it is unknown). Also,
{prosecuted-by mil-action) == {furce},

. where the force is such that the truth value of ‘(prosecuted-by mil-sction farea)’ is T or ? in
the current world state. If the truth value is T then there can be more than one such
force in the current world state for which the ? truth value applies. Then {prosecuted-by
mil-action)' will denote the set of all such FORCEs. This set may be interpreted as the set
of possible candidate FORCEs, one of which may be the force that prosecutes the mil
action.  If the truth value is F for all FORCEs in a world state, then (prosecuted-by mil-
action) Will be equal to NIL (the empty set). '

Please note that throughout this paper I will use upper case words like MIL-ACTION,
FORCE, etc. to denote concepts, lower case words for names of relations and lower case
small letter words like mil-action, force, ete,, with or without subseripta, to denote particu-
lar {or generic) instances of concepta.

The remaining structure declarations in figure 3.1 similarly define the terms shown
in figure 3.2, where OPORDER stands for the concept of an Operational Order, OPPLAN is
an Operational Plan, and lOPORDER-‘I‘ASK is a task specified by the OPORDER, etc. The
MIL-OBJECTIVEs that specify the objective and purpose’” of a military action will be
## The objective and purpese can be diffarent from each other. Thus for example the sbisctive might be ‘Seite 1nd occu-

py the Xray area ob the zouthern shore of Europe’ and its purpose might be to ‘sypport allied operations in Europe.’
{Example taken Trom the Naval Warfare Publication, NWP-11),
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(is-against MIL-ACTION) = {FORCE},

(region-of MIL-ACTION) == {REGION},
{ordered-by MIL-ACTION) == { OPORDER},
(mil-plan-for MIL-ACTION) = {OPPLAN},
(commander-of MIL-ACTION) = { COMMANDER]},
(specified-by MIL-ACTION) == {OPORDER-TASK},
(objective-of MIL-ACTION) == {MIL-OBJECTIVE},
{(purpose-of MIL-ACTION) == {MIL-OBJECTIVE},
(status-of MIL-ACTION) - = {MILA-STATUS},
(risk-factor-of MIL-ACTION) == {RISK-FACTOR]}, etc.

Figure 3.2: Terms defined by the structure of MIL-ACTION.

© given by this opordertask, as also the forces that prosecute the military action. The MILA-
STATUS will specify the status of the military action: whether it is ongoing or pot, if it js
then the losses and casualities encountered by own and enemy forces in the action, the
region controlled by the forces, the well-defended regions, regions under attack, etc., and
if it is not then its readiness, etc. The RISK-FACTOR will specify the risk involved in the
-action and the chances for destroying the enemy forces. Tt will depend on whether the
region of the action is well-defended by the enemy or not. | will not present here the
detailed structures that are used to represent these concepts (See {Srinivasan 1984] for
details).
Notice that I have used the plural form, OBJECTs, in figure 3.1 in the structure
‘{phy-objectives<of MIL-ACTION OBJECTs)'. This indicates that there could be more than

one OBJECT, X, ¥, 2, etc., in a world state such that

{phy-objectives—of mil-action x),
(phy-objectives-of mil-action ¥},
{phy-objectives-of mil-action 2), st

are all true for a military action, mil-sction, in that world state. The declaration,
(phy-objectives.of MIL-ACTION OBJECTs), 1
in the figure apecifies that there should be at /east one physical objective for sach mili-

tary action. In general, in situations like this, one may associate a pair of integers,

(m,n), with the structure, where m is the lower bound on the structure, apd n is the
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upper bound. i.e. at least m and at most objects,

A MIL-ACTION may support more than one MIL-ACTION, and the term (supports mii- |
action) Will refer to the set of all MIL-ACTIONS supported by mil-sction in a world state,
The restriction that & MIL-ACTION c¢an support only other MIL-ACTIONs that are different
from itself is declared by associating the flag, srreflezive with the structure as jn*

k4

(supports MIL-AGTION MIL-ACTIONS), Irreflezive

CONCEPT Y
Has structure, function, behavior
dezign and snalysiy definitions.

specialization . generalization

CONCEPT X
Inherits the strucfure, function,
behavier, design and analysis
. definitions of Y.
In addition, may have its own specialized
additional structures, Junclion, ete.

Figure 3.3: Concept of Specialization and Generalization.

One may have various kinds of MIL-ACTIONs. It can be a DESTROY-ACTION,
SUPPORT--ACTION, BLOCKADE-ACTION, CAPTURE-ACTION, TRANSPORT-ACTION,, etc., or a

. NAVAL-ACTION, AIR-ACTION, etc. These are the specializations of MIL-ACTION. In CK-
LOG a specialization, X, of a concept, Y, will inherit from Y all of its siructure, and
share with Y ita function, behavior, analysia and deaign aspects. In addition X may also

have ita own specialized additional structure, function, etc. There are also facilities to

v Symmetric, anti-symmetric, tramsidive and raflesive are other fagy of this kind that one may associate with a srue-
tore. There are also flags thai one may uwne to control the properiies inherited by a structure from ita geoeralisations,
Hags shat indicate the permanence of a relation, and Aags that cause the system to prompt a user for values under cer

tain conditionn.
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specily exceptions to this general inkeritance rule. Figure 3.3 llustrates the normative

tules for inheritance over the generalization (specialization) hierarchy.

The relational forms,

(RELATION-NAME CONCEPT, CONCEFT,), and
(TUPLE-NAME CONCEPT, .. GONCEPT, )

used in structure definitions are called dimenaions in CK-LOG. In choosing this name, |

seek to suggest-an analogy between forms like

{parent-of INFANT PEREON),
(commander-of MIL-ACTION COMMANDER), etc.,
and forms like

{weight«of OBIECT POUNDS),

(length-of ORJECT FEET),

(area~of REGION SQUARE-MILES), etc.,
which are normally viewed as specifying the dimensions of the indicated measurements.
It is dimensionally inconsistent to say, ‘(length-of OBIECT POUNDS)’ or ‘(area-of REGION
FEET)'. Similarly, one might say that forms like ‘(parent-of INFANT MIL-ACTION),
‘(commander-of MIL-ACTION INFANT)', etc., are also dimensionally inconsistent im our
universe.

If the relational form (r X Y)', or the tuple form (X Y1 ... Yk)is a dimension, then
we will say that they are dimensions of X. Thus the structure of X is the aet of alf
dimensions of X. Every dimeusion '(r X Y)' in CK-LOG will have a converse, ‘(cr Y X)',
such that for instances x of X, and y of Y, {{r x y) ¢ (cr ¥ x)] is true in every world
state. The pair (r, cr) is a converse reiation name pair.

A dimension, (r X Y)', is interpreted in CK-LOG as specifying that there are world
states in the universe in which there exist instances x of the concept X, and y of the con-
cept Y, for which ‘(r x ¥) is true: '

(rXY) e
{EXISTS U, worLD-sTATE)NEXISTS x X}EXISTS y Y)
(ISTRUE (r x y) U,)))!

Thus, if ‘(r X Y) has not been declared as a dimension then in every world siate of the

t  Thio s easily geosralised to tuplss (X Y1 .. Yk) The form (EXISTS x X) exp)’ stands for ({EXISTS x)x € X)
AND exp)), and form ‘({EVERY x X) exp) rtands for ‘{EVERY x)x € X} DMALES #xp))’. The general form of a
quantiber i3 ‘{EVERY /EXIZTS z range) exp)’ where rapge is » sot.
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universe ‘(r x y)' will be false, for all instances x of X and y of ¥. Il X is a specialization
of Z and (¢ Z W) is a dimension then Y should be a specialization of W**. The dimen-

sion (r Z W)' is then said to be a generalization of the dimension frXY).

If (r X Y)Y is a dimension then we shall say that ‘{r x y)' is an instance of ‘(r X Y}’ '
if x is an instance of X, and y is an instance of Y. Clearly, mot every instance of a
dimension will be t-rﬁe in & world state. For a given instance x of X and given relation
name, r, the logicel restrictions associated with ‘(r X Y)' will specify the conditions

under whick '(r x y)' may be true in a world state, for a particular instance y of Y.

Thus, one may specily for (MIL-ACTION x y 1)

[3.4]. ({(EVERY x FORCE}{EVERY y FORCEYEVERY r REGION)
[(MIL-ACTION x y r) ¥
(IEXISTS mil-action MIL-ACTION]
{{prosecuted-by mil-action X] AND
[is-against mil-action y] AND
{region-of mil-action v} AnD {enemy-of x ¥]))])

to indicate that x is the prosecuting force, y the enemy force, avd r is the region of the
action. The above restriction will be associated with the amchor ‘{instance-of MIL-
ACTION)' in the knowledge base. Similarly, the dimension ‘(épe-ciﬁed-by MIL-ACTION
QPORDER-TASK)" may have the restriction, | '

[3.5]. (Ispecified-by mil-action apordat-task] IMPLIES
‘Ispecifies-tasks (ordered-by mil-action) oporder-task])].

i.e., the oporder-task that specifies a mil-action should be one of the tasks specified by the
oporder that orders the mil-action. The term ‘(ordered-by mil-action)' in the above expression
refers to this aporder. This restriction will be associated with the term ‘(specified-by MIL-
ACTION) in the knowledge base. Every dimension {r X Y)' may thus have a logical res-
triction. The restriction on “{r X Y)' will be associated in the knowledge base with the

term (called an aﬂchar?) ‘(r X).” The logical restrictions at anchors, (r X), are written in

s+ Exceptiona to thia general rale are possible, Such exceptions are allowed only if certain devignated Bags are arroriat-
ed with the geoeralization (r T W),

t ‘The create, destroy and keep actions azsocinted with the dimension afe also kept anchored ac ‘{r X} in the knowledge
base. Eesides these MDE uaes ‘(r X)' an the key to a variely of other information associsted with the dimensions (r X
Y,) for j =1, 2, .., b. Hence the naime anchor. ‘
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CK-LOG in a special' form. They are called consistency conditions {CC’s). The CC's

are nsed by TMS to detect contradictions in world states. This is discussed in the next

subsection.

2.4. Consistency Conditions and Contradictions in World States.
For a dimension ‘(r X Y)', the consistency condition {CC) anchored at (r X) may

have one of three forms:

definitional:  ((EVERY x X) [(r x ¥) ¥ (exp x y)]). In this
case the restriction anchored at (r X} is stated as,

{(y Y) | (exxp x¥)}.
amplicational; ((EVERY x X)[(r x y) svPrie= (exp x y)]}. In this
case the restriction anchored at (r X) is stated as,

{7 Y) [ (Ir x y] a0 [exp x ¥])}-

default: {{EVERY x X){{exp x y) mrues (r x ¥)]). In this
case the restriction anchored at (r X) is stated -as,

{( Y) I ([r x y]or {exp x ¥])}.

Here (exp x y) is an arbitrary logical expression ip the domain language DL in which x
and y occur free. Notice that exp could not thus contain modal ezpressions. They may
however con_tain timed expressions. 1| have used the word ‘defaul’ above to name the
reverse implication. In the three valued logical system this CC form may be used to
define defauit values for an anchor. If ‘{r x y)' is unknown iz a world state for all y,
then in the default CC the set {y | (exp x y)} may be interpreted as defining the default

values for the anchor (r x).

Let us denote the general form of a CC at (r X)' by,“
[3.6]. - CCIrX]={{yY,Y,..Y,}]|(ccexpyyx ¥)}

where x is ap instance of X, and (ceexpy g X ¥)' is either Yexp x ¥}, or ‘({r x y] avp fexp
x y]), or (Jr x y] or [exp x y¥])’. For the formulation of the CC’s given above the folow-

ing is always true:

s FrX YD XY L (e X Y are all dimensions of X then the set former in the GG definition at the anchor
‘(r X} will bave the form shewn here.
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[3.71. {(rxy)rr (1:::.:#.-:'(;:{‘_)‘,:I xy)]-

For the anchor (r x) ip a world state U, , where x is an instance of X, the CC defived at

+ *
(r X) is used by the truth maintenance system, TMS, to compute ,

(3.8 {y | (ISTRUE (ccexpy X ¥))} = TPer, -
{¥ | ISUNKNOWN (ccexpwq x y))) = ?chz:lrx] .
{y | ISTRUE (ceexp, x 7))} = FPrcy

. Where TP, P and FP stand for irue, unknown and false parts of the partition induced
by CC[r X] at (r x). Let

39 Pogry ™ TPoges Pocen FPocp)h

where P, is the partition induced at (r x) by CCJr X]. In general, if 21, Z2, .., Zk
are all the generalizations of X, where Z1 = X, for which CCJr Zi} exist for 1 £ i < k,
then the inheritance of the consistency conditions is governed by the following
modification** to the definition [3.8] given above. Let ceexpy o be the cc-expression in

CClr Zi]. Then (ceexp),y x y) used in [3.8] above is changed to,
[3.10].  (ccexp,y x y) = [(ccexp), 5 X ¥) AND ... axD (ccexpy, 5 X }')’]

and the partition P, is computed with this new cecexp, >qu- This partition is com-

pared with the partition,

v FP

Byl P x TPem FPe )

(rx) - [TP

at (r x) in the world state to detect contradictions. Oune may note that,

———r— Tl

+ If the secand argument is mising in ISTRUE, ISFALSE, ISUNKINOWN then its default valzs iz the current world
atate.
#s Unless otherwise specified by appropriate uze of exceptions.

t In MDS ooe may associate CC's also with anchors (7 ¢} where c is » copstant. There are zituatizos where this i neces-
saty to ¢apture exceptions that apply only to particular comstanis of a concept X. If thers ir 2 CC arsaciated with (r
c), then in the abave case the coexp associated with (r ¢} will alsu appear a3 one of the conjunesr in (3,10
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Then,

[3.12a].

[3.12b].

3.13).

C. V. Srinivasan

(v € TPy, FF(rxy) is true as per the CC.
(re ?Pm::) wF (r x ¥) is unkopown as per the CC.

(v € FPyy,y) FF (r % y) is false as per the CC.

Let ‘CC[r x y]’ denote this truth value induced
by the CC on {r x y). Similarly,

(y € TP,) rr(rxy)is true in the world state.
(y € *P,,) rrr (r x ¥) is anknown in the world state,
(v EFP,,) rr(rx y) is false in the world state.

Let (r x y)' by itself denote its truth value in the world state.

Conditions for Contradiction Detection: If for some y in TP, , or
TP, » ((r x y) axo CC[r x y]) = F (false), then a contradiction is de-
clared. Or, if for sume Y| such that (r X Y)} is a dimenzion, the number
of instances of Y, in TPquﬂ is greater than the upper bound associated
with the dimension then a contradiction is declared. This is called the

_ * %
everflow condition .

If for ro y in TPy, or TP, , ((r x y) ano CClr x y]) = F and for
some 3 in TP, , ({r x 2) anp CC[r x z]) == ? then a conditional accep-

tance of changes at (r x) is indicated.

If for all y in TP, , ((r x y) av0 CCfr x y]) == T then the changes at
(r x) are unconditionally accepted.

In certain cases, as indicated by the ‘update’ flags associated with the dimensions,

TMS may update the truth value of (r x y) in the world state to CCir x y]. TMS has

special facilities for keeping track of interactions between the CC's. Thus if the value of

an anchor (r x) is changed, it can identify the set of all anchors (r* z) whose logical res-

trictions are likely to be affected by the change, 6("1 , at (r x). This iz called the

#+ The everlow condition bere 1s a difficuit one to interpret with in the theorem proving context. Notmally, when a con-
tradiction iz encouniered TMS will return a logical expression (as discussed later in this section) that explaina the cop-
tradiction. Thir expression may be used to sct up new goals, if so desired, to remove the contradiction. When the
contradiction is due to an averflow TMS3 cannot return any explanatory logical condition for this overflow, It will 2im-
ply rejeet the changes, with » meomage to the wror that & overflow had ococurmed.
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dependency 2et of (r x) denoted by Dy - By analyzing the CC's defined at the vatious
anchors, for each anchor (r X), MDS can construct logical expressions, called filters,

such that for a given (r x),*

[B.14]. Dy ,q={'(r" )" | (Blter,. o x 1z, )} and

Dy, = UNION {D,. , } overr’.

In this case to check for possible contradictions, TMS will check the CC's at every (r’ z)
in D, - It will accept the change at (r x) only il no contradiction is detected at any of
the {r* z). It will accept the change at (r x) conditionslly if at one or more (r* 2) the
assaciated ccexp evaluates to ! (onkaown) and no contradictions are detected. If a con-
tradiction is detected then the changes at (r x) will be rejected. TMS has special facili-
ties for efficient evaluations of filters and for rechecking of CC’s by saving partial results
of previous evaluationa.

If the chapges at (r x) are unconditionally accepted then TMS wiil return a logical

expression, Jy. 4 , for which (ISTRUE J,,) U,) == T. This expression is interpreted as the

justification for the acceptance of the changes at (r x}: Jipy i3 the strongest condition

such that the changes at (r x) logically imply Jl"l inl, .

If the changes at (r x) are conditionally accepted then TMS will return an expres-
sion, €, , such that (ISUNKNOWN C_, U,) = T, and the changes at (r x} logically
imply Cyy .- Cpy I interpreted as expressing the weakest condition under which the
changes will be acceptable. It is used in a problem solving process to generate the

hypothescs aszocizted with the solution of a problem (as discussed in section 2).

If the changes at (r x) are rejected then TMS will return the expression Nl“lf' such
that (ISFALSE Ny U,) == T, and the changes at (r x) logically imply Nlml . Nl"! is
interpreted as expressing the weakest condition which should be made true in order for
the changes at (r x) to be acceptable. It may be used in a problem solving process to set

up the new subgoals,

+ This subsyatem has pot yet been implemented. At present filtera are defived by vrer.

1 Nlﬂd will not contain expreasiona for indicating overfiows.
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[3.15]- —+ <conjunction of chag .
ges made in th )
— (ACHIEVE N) ; ¢ world state> :

.o

under user’s option. The successfu] solut; .

2t (¢ x) t0 be scoepted. The expresaioi:l::;i; ::e:e t.;; ;ubsonlsl,l will !’ofce the changes
. culus for residue extraction and properties of resid ¥ :l‘ﬂ ca ed' reaad.m'u. The cal-

'77]“' ues are discussed in [Srinivasan 1073,

The ASSERT statement is used in CK-LOG to incorporate changes into world
states, The ASSERT statement recsived by TMS will in general have a list of grounded
(timed) literals as arguments, All the literals in the statement are asserted in parallel,
in the sense that the changes specified by the assertion sre first incorporated into the
world state, and the contradiction check is performed afterwards on the new world state
so obtained. The form (ASSERT (inatance-of X c))' is interpreted 2s a command to
create in the world state the constant ¢ as an insiance of the concept X, and ‘(ASSERT
(nor (instance-of X c}))’ is interpreted as a command to destroy the constant c. Special
procedures CRI (CReate Instance), and DESI (DEStroy Instance) are used in TMS to
implement these. '

Every object, concept and action, ¢, in the world state, and every property associ-
ated with c {via a relation} will bave a creation (and a destruction) time associated with
it. This time will be specified by the time expression appearing in the asserted timed
literal. If the literal asserted is not a timed literal then the current time in ti.¢ world
state is associated with it. It is of course true that c can have a property at time, t, only
if it had been itsell created at ¢ or before t.

{(t (OCCURS ¢)) == {OCCURS (t ¢)) = (OCCURS (t {inatance-of ¢ X))}, where X is
the concept of ¢, is true if ¢ occurs (exists) in the world state U, * . For a closed proposic
tion not containing modal expressions, (ISTRUE (t proposition)} is true if the propositition is
true in U, . In this case (OCCURS (t propesition)) = (ISTRUE {t proposition)).‘r Similar

#s For examples of residuea and their uses see [Sridharan 1978, [Brinivasan 1973, 'TT, 8]

 In general, » constant ¢ can be simuftaneously an inatance of several concepts, and #0 also & concept X may be a spe-
cialization of several other concepts, Il ¢ is an inatance of both concepts X and Y then the properiies assnciated with ¢
will be defiped by the union of the dinicnsions associated with X and Y. The logieal restriction amociated with each
dimensien of c will be the conjunction of the restrictions associated with the correspending dimenpsions in X and Y. 1f
a concept X is a specialization of both Y aed Z then X will inkerit the dimenrions of both X and Y. The P!‘fbpﬂﬂi_!! in-
herited by X from Y and Z may be controlled by the ©C" asascisted with X and by the use of designated inberitance

Haga.
t K may be noted that (ISTRUE {CREATE exp)) == ({STRUE exp)), and {OCCURS (ASSERT exp)) = (OCCURS
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considerations apply to ISFALSE and ISUNKNOWN operators. The inference rules for

these were discussed in section 2.9.

Forl modal expressions that refer to processes like CREATE, DESTROY,
ACHIEVE, ete,, (QCCURS (¢ procens-sxp)) == (¢t (OCCURS pracem-exp)) will be true in U,
only if all the actions that are implicitly referred to by the proces-exp occur in the world
state. It will be false in U, il some or all of the actions do not occur in the world state.

It should be noted that the trath of (OCCURS (t process-exp)) does not depend on the

guccess or failure of these actious...Thus (OCCURS (t (CREATE exp))) will- be: true if - -

all the actions needed to make exp true exist in U, .

As discussed in section 2, CK-LOG uses its inference engine {0 analyze process
expressions and reduce them to the actions implicitly dencted by them. In describing
the inference rules used for this analysis | introduced the meta-functions, create-
action-of, destroy-action-of and keep-action-of to retrieve the actions associated
with a positive literal. As mentioned before, these action definitions are associated in
the knowledge base with anchors. The form of these definitions is discussed in the pext

sybaection.

3.5. Actions Associated with Anchors.

The create, destroy and keep actions that are associated with anchors (r X) are
stated as inference rules. The actions that might be involved in the creation, destruction
or the maintenance of an ipstance, ¢ of a concept X, are associated with the ‘(fnatance-of
X) anchor. The definitions of these actions is best introduced through a few e:vcar::q:»lm‘.l'r
The first example in table 31 shows the destroy-action for destroying the truth of
‘(belongs-to BASE FORCE)', i.e. for destroying the fact that o base might belong to a given
force. As mentioned in section 2, the invocation of this action will be caused by a (DES-
TROY (belongs-to base force))’ statement encountersd in a problem solving process, in a
world state in which the said base does belong to the force. The condition associated with
the rile in the table says that it could be invoked unconditionally (reader may conirast
this with the create-action shown in table 3-1I, which has an invocation condition

—— i WP

exp).

1 These examples are sgain taken from the OPPLANCOMILLTANT. Ses {Srinivasan 1084] for details on how the rules
shown here are used in & planning problem seiving context.
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associated with it). The rule shown in table 3-1 is anchored to ‘(belongs-to BASE)’, as its

deatroy-action.

TABLE 3-1: destroy-action {or (belongs-to BASE FORCE).

Condition Inlerence

((EXISTS x FORCE)
([vor (controls {region-of base) X} a0
T {CREATE (tm-term (contzols (region-of bae) x)]))

{tmeterm (belongs-to base force))

When this rule is invoked by the destroy-action-of function it will do appropriate
substitutions for the variables base and force, and the patiern ‘tm-term’, by matching the
expression at the bottom of the inference rule in table 3.1 with the argument of the DES-
TROY expreasion that caused the invocation. During this process the functicen will also
substitute all the terms appearing in the top expression of the inference rule with their
values, if such values exist in the world state at the time of the invocation. The term
{(regioneof base)' appears in the top expression in table 3-I. This is the region where the
base is located, A part of the general knowledge of the system (for the operational plan-
ning domain), as expressed by the CC nssociated with the anchor, ‘(belongs-to BASE)', is
that a base belongs to the force that controls its region. Thus, to destroy this belongs-to
relation the rule in table 3-1 says that one should find a FORCE, x, who does not control
the region of the base and this force x should then be made to take control of this region.
The point to note here is that these action rules are stated in TML and thus modal

expressions may occur in the statement of these rules.

The rule in table 2-1I specifies the create-action for ‘{bases-at REGION BASE). This
rule will be invoked, of course, only if the base is not in the given region at the time it is
invoked. The rule says that to create a base in a region at a time specified by the ‘tm-
term’, a BUILD-BASE action, x, should be created by the agent who controls the region of
the base, the base-of (the base to be built by) this action should be the base, its region
should be region, and its starting-time should be the needed time (needed-time-for) before
the ending-time specified by the tm-term. The function Mrusnnve is one of the funciions
defired in MDS. It takes as arguments time instants or time expressions and returns

either time instapts or reduced time expressions. The condition on this rule says that
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TABLE 3-1I: create-action for (bases-at REGION BASE).

Condition

Inference

for (OCCURS base))] {starting-time-of x

[{(EXISTS x BUILD-BASE)
({agent-of x (controls region)) arp
(base-of X base) AN
(region=of x region) AMD

(before (MoamTME tTN-Lerm
{needed-time-for x)})) a0

(ending-time-of:x tm-term)) -~

{tm-term (bases-at region basc)}

the ruie may be invoked only if base does not already exist in the world state {in any

region}.

TABLE 3-HI: Create-action for (location-of OBJECT LOCATION).

Condn.

Inference -

((EXISTS sranr TRANSPORT)NEXISTS convoy CONVOY)
(EXISTS x LOCATION)

{(before tm-term){location-of sbject X)) Ao

{(CREATE {(starting-time-of trans)(location-of convey X))} aro
{belongs-to cenvey {controls (region-of location))) Arp
(objects-of urans object) ANp (destination-of trans location) Aro
(epding-time-of trans tm-term) Ao ete.)

(location-of ebject location)

The rule in table 3-III specifies the action for making an instance of ‘(location-of

OBJECT LOCATION) true in a world state, i.¢. to put an object at a location. This rule

will be invoked, of course, oply if the object ia not already in the given location. The

rule in effect calls for the formation of a convay to tramnsport the object (using trans) from

its current location 1o its new location, with the appropriate timing conditions.

Rules like these are invoked only by the problem solving system of CK-LOG. They

are not invoked by TMS during ita model building {updating} processes. The action

definitions illustrated above epables CK-LOG to identify the actions that are implicitly

referenced by the process expressions. It also provides the facility to build the poasaible

worlds associated with the modal czﬁrcut‘om. The organization presented here provides
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a general logical scheme to describe and reason about actioﬁs,"ihking inte consideration
their time dependencies. The crucial facility in CK-LOG that makes this possible is the
‘organization of its TPS, in which the TPS uses and updates models of world states dur-
ing the theorem proving process. The states of the models so built restrict the inferences
that are made by TPS. This makes it possible o ese CK-LOG to plan for the achieve

ment of given objectives, as discussed in [Srinivasan 1984] and in section 4.

In examples shown above the conditions associated with the rule invocation are
rather simple ones. As experience develops with the use of CK-LOG in a particular
domain one may find it profitable to define different specializations of rules of this kind,
each associated with a different world state condition for its invocation. Thus with
experience one may find an expanding repertoir of inference rules in the system with
diflerent invocation conditions associated with them. One may view these invocation
conditions as expressiug the heuristics for rule selection. These conditions are pot used

to modily the sequents in a deduction tree, they are used only for rule selection.

This will make it poasible in CK-LOG to learn through problem solving experience.
As | mentioned before, sinee CK-LOG's inference engine can run both ways (i.e. for
deductive as well as inductive inference), the inference rules may be used 1o generalize
the world state situations under which certain patterns of rule applications succeed in a
proof tree. These generalizations may be associated as invocation conditions with possi-
bly new versions of the invoked rules. Each such new rule will be a specialization of the
original rule. At a later time if this specialized rule fails after invocation, then the nega-
tion of the conditions causing failure may be used to strengrhen the invocation condition
‘associated with this rule. This scheme provides the basic ingredients necessary for learn-
ing through experience. [t :ﬁay be noted that the theory forming ability, namely the
ability to generalize given situations in a world state, is essential to this kind of learning.
It is now too early to comment on the use of this scheme in CK-LOG. Little is known
about its theory and practice. But it is significant that as a logic based knowledge pro-
cessing system CK-LOG has this dual potential, (a). for knowledge based problem solv-
ing, and (b). for knowledge based learning. This is unique to CK-LOG organization.

Let me pow present an example that illustrates the wse of CK-LOG's action cal-

culus for planping, analysis and execution of actions.
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4. The Action Calculus.of CK-LOG, An Illustration.

{ present here a relatively simple situation consisting of the action GIVE and BUY,
and show how the action calculus implied by the inference rules for the modal operators
may be used to solve problems that involve action execution, planning and apalysis of

action consegquences.

Figure 4.1; Dimensions common to all ACTIONs.

sirycture | (starting-time—of ACTION TIME), 1
(ending-time-of ACTION TIME), 1
(oeeded-timesfor ACTION DURATION], 1
(status-of ACTION ACTION-STATVSS), 1

Figure 4.1 shows some of the dimensions common to all actions, the ones we will be
using ip this example. The GIVE concept is shown in figure 4.2 The tuple definition that
occurs frst in the structure of GIVE indicates the conditions under which two given
actions at a given time are to be reckoned as being distinct. Every GIVE action has an
agent, a recipient and items that are given. Its function says that after the interval of a
give there is an object whose ownership changeﬁ, and/or there is a service which the reci-
pient of the give receives from the agent of give. Ita behavior states that every item that
is given should be owped by the giver before the interval of give and for every service that
is given, the giver should be able to perform it. Also, during the interval of give the reci-
pient either enjoys it or suffers it. The CREATE operators in these expressions indicate

the properties that are newly created.

Let me state the CC associated with (status-of GIVE) just for the case of successful

completion of the action:

[CC): {x | {{status-of give x)or
((is % sucessaful) AMND
(owns (recipient-of give) (items-of give)))j}

The ‘is’ relation is used in CC's to bind the set variable as shown above'®. This is a
“default CC. If the status is unknown and the recipient of ‘give’ owns the items-of ‘give’

then the status will be by default set to successlul.

aw  This relation is used iz order to be able to wrive all CC's in the same standard format. it ia zupprexded, apd ap-
proprate substicusions for the set variable are made, when ccexps are transferved to problem sequents in the KB-
looknp process discassed in section 2.
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Figure 4.2: The GIVE concept.

siructure | (GIVE {agent-of give){recipient-of give)(items—of give))
{agent-of GIVE PERSON), 1

(recipient-of GIVE PERSON), 1

{items-of GIVE (OBJECTa SERVICE:)), 1

Junction | [(before (ending-time-of give))
((EXISTS x OBJECT)

{[iteme-of give x| nerom

[CREATE (lowns (recipient-of give) x| aro [nory (owos (agent-of give) x)])])]

AND

[(EXISTS x SERVICE)

{litems—of give x| nams

{(agent-of x (agent-of give)) arm (CREATE (reclplent-ol' x {recipient-of give)|)])])]

behavior | ({(EVERY x OBJECT)
{{items-of give x) s
[CREATE ((before (starting-time-of give))(owns (agent-of gwe} <N
AND
{(EVERY x SERVICE})
(fitems-of give x| L
[CREATE
{{{before (starting-time—of give})(can-perform {agent-of gwe) x}]  aw
{during (interval-of give})
([enjoys (recipient-of give) x] on [suffers (recipient-of give) x])])|)|

The concept of BUY is shown in figure 4.3. This has only structure and behavior
defined for it. Every time a BUY occurs this behavior will occur in the world state. The
behavior simply says that the seller gives the buyer the items bought and the buyer

gives the aecller the cost of the items.

The structures for SELLER 2nd COST are shown in figure 4.4, The create-action for
‘(owns PERSON OBJECT)’ is shown in table 4.I. It says that to own something a person
should find a seller who sells it and buy it frpm him at the appropriate time. | have indi-
cated above that the CREATE expression should become true before the time specified
by the tm-term. Normally in action statements like this one would specify that the
fecessary actions should start the needed time before the tm-term. The needed time
itself will be specified in the action definition as a3 CC (See {Srinivasan 1984] for an exam-

ple of this kind). 1 have chosen the simpler course above.
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Figure 4.3: The BUY concept.

giructure

(BUY (buyer-of buy))
(seller-of BUY SELLER), 1

; (buyer-of BUY PERSON), 1
{items-of BUY {OB/ECTs SERVICE)), 1

(statuswof BUY ACTION-STATUSS)

behavier

[(between (interval-of buy))
(IEVERY x (items-of buy )|[EXISTS y (cost-of (seller-of buy))]
[(item—of y x) pamzs
(CREATE
[{GIVE (seller-of buy){buyer-of buy) x} ac

(GIVE (buyer-of buy )(seller-of buy) (price-of y))})])]

Figure 4.4: Structures of SELLER and COST.

slructure

{sells SELLER {OBJECTs SERVICE:)), 1,
(cost-of SELLER COST3), 1,

sruciure

(item-of COST {OBJECT SERVICE)), 1,

(price-of COST DOLLARa),

TABLE 4.1: Create-action for (owns PERSON OBJECT).

Condn.

Inference

T

([EXISTS seller SELLER]
[(sells sailer abject) avp
{CREATE
({before tm-term)]

{(EXISTS buey BUY)
([seller-of bay seller] anp (buyer-of buy perton)

aro> (iteme-of bay object)])])])

(tm-term {owns persen object}}

Let us now consider the problem to make true the statement that John owns a car

after (1984 Sept]:

{pj], — (CREATE [(EXISTS x cAR)({after (1984 Sept)] {owns John x])]) ;
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Let us assume that John is already in the world state associated with {P1), and there are
pumerous instances of SELLERs who sell cars, where the cars being sold are also in the
world state. Let us assume that cars are created by simply asserting into the world state
the appropriate properties of the cars, whatever they might be’, and that the current
time in the world state is [1984 Sept 27]. The sequence of deductions on this problem is
shown in tables 4.II through 4.VIIl. In these tables the rules in the last column of the
table are applied to the [*]ed expressions in the sequent in the center column. The
number, if any; appearing-in- parenthesis afier the.rule.indicates the number of times the -
rule is applied. |

The [— CRR-E| rule is applied first resulting in the problem {P2]. The CREATE
expression is still retained in the sequent. I have used CREATE(1) in {P2] to indicate
that this CREATE expression has been already expanded once. At this point the candi-
date constants for binding eGx] are the constants that exist in the world state. There
are no creafe-aclion associated with (insfance-of CAR). So the application of {CRR-EL2]
rule o (CREATE (eGxl € CAR))' simply transforms it to an ASSERT statement as
shown in [P3]. The second create expreséion in {P2] gets transformed to the create-
action associated with the ownership relation, shown in table 4.1, with proper variable
and tm-term substitutions. Notice that ‘(before (after [1984 Sépm]))' got transformed in
this process o ‘(before {1984 Oct 1])’. This happens as a part of the evaluation of terms
that occurs during the invocation of actions using create-action-of lunction in {CRR-

EL2]). The resultant sequent is shown in [P3].

At this point the [CRR-EL2) rule is applied 4 times to the CREATE expressions in
[P4] and then the assert elimination rule, [— ASRT-EL|, is applied. In this case there
are no cresfe-acfions associated with the atoms appearing in the CREATE expressions
in [P4]. This causes the ¢reation-action-of function to replace ‘CREATE’ with
'ASSERT’ in the expressions in {P4]. Subsequent application of [ASRT-ASRT] rule
removes the nested asserts, and finally [~ ASRT-EL] changes the ASSERT to R-assert.
The resultant sequent is shown in [P§].

Now, we have a simple parallel assartion on the right side with variables eGx1,
eGx? and «Gx3. All these variables should eyentually‘be bound to the constapts that

« We will oot gev involved wivh the car creation procssaes,
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TABLE 4.11: Deductions on P1.

¢.V. Srinfvasan

Nane

Sequent(s)

Rule(s)

Py

~ (CREATE {(EXISTS x CAR)...))[* ;

[~ CRR-E|

(P2}

— (ASSERT
([CREATE (eGx1 € CAR)],[¥]
[CREATE ([after (1084 Sept)|jowns Jobo eGx1}}})){*]
(CREATE(1) ((EXISTS x cAR)..)) ;

[CRR-EL2|(2)

P3]

— (ASSERT
((ASSERT (eGx1 € CAR)),[+] -
([EXISTS seiler SELLER]
|(sells seller eGx1) aro
(CREATE
([before (1984 Oct 1)]
[(EXISTS buy BUY)

{[seller-of buy seller] arm
[buyer-of buy Jobhn] arm
liteme-of buy eGx1)DNDILIY]

(CREATE(1) ((EXISTS x CAR)...)) ;

|— ASRT-E]

[— CRR-E|
[TMR-AND|
|CRR-AND]
[ASRT-AND]
|ASRT-ASRT|

(P4

- (ASSERT
({eGx1 € CAR),(eGx2 € SELLER),(sells eGx2 eGx1),
(CREATE ([before (1984 Oct 1)][eGx3 € euy])),
(CREATE (|before {1984 Oct 1)}[seller-of eGx3 ¢Gx2t)),
(CREATE (|before (1984 Oct 1)|{buyer-of ¢Gx3 John)}),
(CREATE ([before (1984 Oct 1)][items-of ¢Gx3 eGx1])))}.{*]
(CREATE(1) {(EXISTS x ¢AR)...)) ; '

|CRR-EL2](4)
[— ASRT-EL]

[P3]

~+ (R-assart
{(eGx} € CAR),(¢Gx2 & SELLER),(sells eGx2 «Gxl),
([before (1984 Oct 1)][eGx3 € BuY]),
(|before {1884 Oct 1)|[seller-of ¢Gx3 eGxd]).
([before {1984 Oct 1)}{buyer-of eGx3 Jebal),
{[before {1984 Oct 1)|[items-of £Gx3 &Gx1))),[*|
(CREATE(1) ((EXISTS x GaR}...)) :

iPel

(value=of {behavior buy-3))
— (CREATE(1) {(EXISTS x CAR)...)};

exist in the world state associated with sequent {P4]. The R-aesert function will now
seek to bind these variables in the appropriate manner, invoking the help of the user
whenever there are choices to be made. None of the atoms in the assert have matching
atoms on the left side. The ;:onjunction of these atoms is thus presented to the user as a

possible bypothesis:
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[HP4]. — {(¢Gx1 € CAR) A (¢GX2 € SELLER) arp (sells ¢Gx2 ¢Gx1) are
([before (1984 Oct 1)[[eGx3 € BUY]) arp
([before (1084 Oct 1)j[seller-of ¢Gx3 ¢Gx2}) Ao
{jbefore (1984 Cct 1)j[buyet—of eGx3 lobn|) avo
(|before (1984 Oct 1)|[items—of £Gx3 eGx1)))) ;

HYPOTHESIS? >

Let us suppose that the user responds with ‘Y’, confirming the hypothesis. This
hypothesis is now associated with {P4] and also entered as a new problem in the frontier
set of the deductian‘treet: ~The- assertion “is now performed:- The -assimilation of-the
asmertion occurs in the following order: The instantiastion commands in the assertion m-e-
first. executed. In the above case there are no such commands (if any, they will be asso-
ciated with the instantiation variables jn an assertion). After this the generalization
variables in the assertion are checked to see whether they have candidate bindings in the
world state. In the above case all except eGx3 have candidate bindiogs {there are no
active instances of BUY in the world state). This causes the system to create 3 new
instance of BUY, say buy-3 and bind it ta ¢Gx3. Substituting buy-3 for ¢Gx3 in the asser-
tion produces the grounded atom, ‘(buyer-of buy-3 John), which is now asserted intc the
world state. Also, the st.artilng time of buy-3 is set to ‘(before [1984 Oct 1])’, since this is
the time it was created as per the assertion above. [ have not specified the .nceded time
for a BUY action. Let me assume that it is negligible, and that the ending-time-of buy-3 ia
also ‘(before {1984 Oct 1))

At this point the world state is searched to see whether there are any possible bind-
ings for the other generalization variables that occur in the assertion, selecting the vari-
ables in the order of their cteation. This is done by evaluating the set expressions given

below over the world state:

[51]. {{eGx1 CAR]) | Hsells ¢Gx2 eGx1) ano ({before (1984 Oct 1)[{itemsof buy-3 ¢Gx1])|}
[82]. {{eGx2 SELLER) | [{sells #Gx2 eGx1) arm ([before (1984 Oct 1)|{sellet-of boy-3 eGGx2))]}

Theae set expressions are formed uwsing the atoms that coptain the set varinbles in the
given assertion. The logical conditions that define these will now evaluate to the truth
value, !, in the world state, because the relevant propertiea of buy-3 are undefined. Thus

t | have not shown this hypoihesin problem in the tables shown here.
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the bindings generated for these variables are interpreted as candidate bindings for the
" variables. These candidate bindings are now presented to the user requesting the desired
selections to be made. Suppose the selections eGxl == car-i and eGx2 = seller-2 are made
by the user. These are then used to recheck the satisfaction of the conditions in the
assertion. If seller:2 does not sell ear-1 then the candidate dealers who sell carl, and the
candidate cars that are sold by seller-2 will both be presented to the user. Once the
appropriats choices are made all the three variables are bound to their respective

selected values and the world state is appropriately updaudf'.

In the simple case above the assertion succeeds unconditionally. The new instantia-
tion of BUY now results in updating [P5] with the action predicate for buy-3 producing the
new problem sequent showa in [P8]. The action predicate here is simple because buy-3
has no function associated with it. The ASSERT siatement jtself does oot appear in
IP6] since it has been already successfully accomplished. The evaluation of the value-of -
function now results in sequent [P7] shown in table 4.111. Notice that during this evalua-
tion all the terms in (bekavior buy-3) are evaluated in the world state and their values are

substituted in the expression. The deductions from {P7] are shown in table 4.II1.

Ouce [P10] is obtained the create elimination rule, {CREL-2), is applied, since the
GIVE expressions are not true in the existing world state. Since there is no create-action
associated with GIVE this causes the create-action-of function to simply ' replace
‘CREATE' by ‘ASSERT’ in [P10]. Subsequent application of [ASRT-ASRT] rule
removes the pested ASSERT3 from the resultant expression, producing [P11]. At this
point the axiom test is applied to bind the variables uGx1 and elcl. The interpretation
sasociated with € causes 0Gx1 to be bound to car-1. The range for elcl is the set of costs
associated with seller-2. The cost in the world state that ¢an now match with the atom,
(jtem-of elel uGx1)', on the right side will thus be the COST that specifies the price-of
car-1. Let us call this COST, cost. Let us suppose that the price of car1 is 6000 dollars.

Then the following will be true in the world atate:

[(itemeof cost car-1),{ price-of coat {6000 DOLLARS))]

v+ [notead of making the selestion of the car arbitrary, | could have given a dmcription of the kibd of car that John
wants to owa. [ took the simpler approach here to kexp the discnazion short.
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Name

Sequents

Rulea

[P7]

{{between {intervel-of buy-3))
([EVERY x {ar1}|[EXISTS y (cost-of seller-z)|
[(item-of ¥ x) prues
{CREATE
[{GIVE selter-2 Jobn x) anp (GIVE John seiler-2 (price-of ¥))])|])]
— {CREATE(1) ((EXISTS x cAR)...}) ;

[— VU]

iP8).

[(betweean: {intervads of buya3)). .
((EXISTS y (cost-of seller-2))
[(item-of ¥ uGx1) names
(CREATE
[{GIVE seller-2 Joha uGx1) ard (GIVE Jobe seller-2 {price-of y))))
— (uGx1 € {car1}},
(CREATE(1) {(EXISTS x cAr)...)) ;

|E =]
[IMP —]

[Po]

felcl € {cost-of seller.2},
{(between (interval-of buy-3))
(CREATE
[(GIVE sefter-2 Joba uGx1) Ao (GIVE Jobn selier-2 {price-of elc1))])]
— (uGx]l € {car1}), litem=of elcl uGx1),
(CREATE(1) ((EXISTS x CAR)...}) ;

[CRR-TM|
[TMR-AND)]
|CRR-AND]

{P10|

(elel € (cmt.—of aeller—ﬂ),
(ASSERT
|(CREATE :
{(between (interval-af buy-3))(GIVE seller-2 Jobn uGx1]})]),
(CREATE
{(between (interval-of buy-3){GIVE John seller-z (price-of elc1)}]])
— [uGx1 € {aar1}), (item-of elc] uGxl),
(CREATE(1) ((EXISTS x CAR)...)) :

{CREL-2]

|CREL-2)
[ASRT-ASRT]

[P11]

., (ASSERT
{{(between (interval-of buy-2))(GIVE seller-2 Jobn uGxl)),
{{between (interval-of buy-3))(GIVE Jobn selier-2 (price-of elc1)))])
— ..., (CREATE(1) {EXISTS x car)...)};

|[ASRT-EL —|

P13

crr (L-nssert
[({between (iniervai-of bay-2))(GIVE seller-2 Jobn ear-1)),
{(between (interval-of buy-3))(GIVE lohn seller-2 {price-of cont)))])
— ..., {CREATE(1) ((EXISTS x caR)...)} :
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As a result of a successful match between ‘(item-of elcl uGxl)' and Yitem-of cost car-1),’
elel mow gets bound to cost. With these bindiags, the application of [ASRT-EL —|,
changes the ASSERT expression in [P11] to {Pl?]'.

The L-assert function in [P12] pow causes two new instances of GIVE to be
created, with the indicated time conditions. Let us call these givel and give2. These are
shown below:

(GIVE sefler-2 John earel)  (GIVE Johs aeller-2 {price-of con)
{agent-of givel aellor-2) (ngent-ol‘-;in! Joka) - :

(recipient-of givel John) {recipient=of give2 seller-2)
(items-of givel car-i} (items-of pvez {6000 DOLLARS))

Both the starting and ending times for these give actions arc between the {interval-of
buy-3), and all the properties shown above are true during the interval between the start-
ing time and the ending time of the GIVE actions. At this point the function and
behavior of these actions are used to introduce the action predicates for these actions
into sequent [P12] resulting in sequent {P13] shown in table 4.IV. The two GIVE actions
above occurred within a parallel assert. Thus the function and bekavior of both of these
should be successfully completed before the assertion is considered to be successful. This
s indicated in sequent {P13] by the parallel predicate fag, ‘¢’ associated with expressions

in the sequent.

The rules (EVTM-EL3| and {IMP —] are applied to the expressions in {P13]. The
[EVTM-EL3] rule is applied because the event conditions appearing in the expressions in
{P13] are not true in the world state associated with the sequent. This rule transforms
the cansal expressions in [P13] to their equivalent implicational forms. Subsequent
applications of [IMP —] rule to the resultant expreasions produce the sequents {P14a}
through [P14e]. Not all the sequents generated by the application of {IMP -] rule are
shown in the table. Notice that, in the binding conditions for the time variables eltl
and elt3, the times when the status of the actions become successful have been set equal to

the ending times of the respective actions. This is 3 piece of information that is knows

+ if John bad boughi aeveral itama then at thir peint, for erch item bonght by Jobr, twe GIVE asveriicus of thin kind
shown in [P12) would have been eveated.  This will happen because UGx1 in a unversal geaeralizacion vanable. Also,
all ihe GIVE actions weuld sceur in the same world state, since they are parallel actions. !n this case if Jobn did oot
bave cnongh money to pay for all the items he bought. then the goal wonld fail. Thos even though fohn mighs be
shle to buy x alonw, or y aione, he might hot be able to buy both of them.
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for all actions: the ending time for an action is the same as the time whep the action
becomes successful. At the time the binding conditions are generated this is recorded.
Also, when the binding conditions are generated all known partial orderings among the
time points are recorded. This results in the orderings shown in the binding conditions.
This ordering is now imposed on the expressions associated with the time instants. The

expressions are selected for analysis in this order.

TABLE 4.IV: Deductions from [P13].

Name

Sequents

Rules

P13

$[(before (time-of (status-of givel auccenful)))(value-of (function giver))f[*],

[EVTM-EL3](4)

ﬂ(bﬂfﬂﬂ.‘ (time-of (status-ol givez snecenstul)))(value-of {funclion mve2))][*],
$|(before {time-of (value-of (function gve)))(value-of (behavior gve2)}i[*],
— ..., (CREATE(1) ((EXISTS x CAR)...)) ;

$|(before (time-of (value-of (function ;ive))){value-of (bchavior giver )]+, [IMP —]{4)

[P14a] | ((before elt1fvalue-of (function giver))),[+]
({before elt2f{value-of (behavior giver))),|*|
({before elt3)(value-of (function give2))),
({before eltd)(value-of (behavior givez)))

— ..., (CREATE(1) ((EXISTS x CAR)...)) ;

iP14b] | .. — ..., (CREATE(1) ({EXISTS x CAR}...)).{elt] (status-of givel suceenafel)) ;
[P14e| . = ..., (CREATE(1) ((EXISTS x cAR)...)}.{elt2 (value-of (function givel)) ;
{P1ad] | .. - ..., (CREATE(1) ((EXISTS x CAR)...)},{elt3 (status-of give2 successiul}) ;
[Pl4e] | .. =~ ..., (CREATE(1) {(EXISTS x CAR)...)),(elt3 (value-of (function give2)) ;

Binding conditions:

{elt] == (time-of (s1atus-of givel succesnful)) = (ending-time-of givel)),
(elt2 = {time-of (value-of (function giver))),

(e1t3 == (time-of (status-of give2 successful)) = (ending-time-of givez)),
{elt4 = (time-of (value=of (function givez))),

{before eltl elt2), (before elt3 eltd)

At this point let me consider the anaiysis of the two [+]ed expressions in sequent
[P14a). The analysis of the remaining expressions in this sequent will be similar to this.

The expanded versions of these expressions are shown in sequent {P14a] in table 4.V.

Based on the time ordering of the expressions the {+Jed expression in {P14a] of table
4.V is now chosen for further apalysis. The application of [TMR-AND] rule moves the
time term inside the conjunction, distributing it to the two conjuncts. Subsequent appli-

cation of J[AND — replaces the a with a comma. At this point [TMR-U] rule is
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TABLE 4.V: Expanded Sequent [P14a).

applied to move. the

Name Sequents Rules
{P14a] | ((before elt3)(value-of {function givez))),
((before elt4)(valus-of {behavior givez)))
{{before elt1) {TMR-XN|
[(before (endingetime-of givel)) [TMR-E]
({EXISTS x ©OBIBCT) [AND —]
{litems-of give) x| ovPLIES [E —](2)
[CREATE (lowns Joba X| A0 {rom{owns seller-2 DN
AND
[(EXISTS x SERVICE)
(litems-of giver x| o=
{{agent-of x setter-2)) av0 (CREATE {recipient-of x Joba})})]).
(] | ((vefore elt2) [TMI-AND]
({(EVERY x OBIECT) [AND —|
{[items-of givel X) pwms [U =jt2)
|CREATE ({before (starting-time-of givel})(owns seller-2 Y
AND
[(EVERY x SERVICE)
([ivemsof givel x| oS
|{CREATE
{{(before {starting-time-of givel))(can-perform setier-2 x)| a0
|(during {interval-of give1))
{{enjoy= Joha x| om [suffers Joho (= -
— ., (CREATE(1) ([EXISTS x CAR)..)) ;
[P14b] | .. = .o (CREATE(1) ((EXISTS x CAR)...)),(elt} (status-of givel succenful)) ;
[P14c] | .. = ... (CREATE{}) ((EXISTS x CAR)...)),(¢]t2 {value-of (function gvel)) ;

time terms inside the respective universally quantified expressions,

After this {U =] is applied twice, and there after [IMP —] is applied. This results in the
sequents shown in {P15a] through [P15d] shown in table 4-VI.

At this point let me focus attention ooly om the <object-exp>> shown in table

4.VI. The rule {TMR-IMP] is applied to the <object-exp> in sequents [P15a] and

{P15¢]. This causes the time condition to be moved in front of the antecedent and con-

sequent of the implication. Subsequent application of

[P16a] through [P1€d]| shown in table 4.VIL

{IMP -] results in the sequents
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TABLE 4.V1: Deductions from {Pl4a].

Mame

Sequents

Rules

[P15a}

[P15b|

[Pibc|

{P1ad]

((befote elt3){value-of (function givez))),
((before elta}(value-of (behavior give2)}),
[(before eltl){function gve1)],
[(before elt2) '
(litems-of giver uGx14) nomes (IMP —|
[CREATE ((before (starting-timesof giver}}{owns seller-2 uGx14))])|,
[ will coll the above ezpression < object-exp>|
[(before £1t2)
([items~of gvel uGx15] o
{CREATE
{{before {starting-time-of givel)){can-perform seiler.2 uGx15)] am
{(during (interval-of giver))
(lenjoys Jobs uGx15} on [suffers Jabn wGx1S)DIN)). ---
[J will cail the sbove expresgion <service-exp>|
— ..., (CREATE(1) ((EXISTS x CAR)...)) :

{{before elt3){value-of (function givez)}),
{(before eltd)(valueof (behavior givez))),
[(before elt1)(function givel]],
< service-exp > —
... [CREATE(1) ((EXISTS x ¢AR)...)).{uGx14 € {{before £l12) OBJECT)

((before elt3)(value=of (function give2))),
((before elt4){value-of (behavior mvez))),
[{before elt1){function gives}],
< objecteexp> —
oy {CREATE(1) ({(EXISTS x CAR)...)).(uGx15 £ ((before elt2) SERVICE)

((before elt3)(value-of (function givez))),
((before elt4)(value-of (behavior give))),
[(befote elt1){function givel)],

—~ ..., (CREATE(1) ({EXISTS x CAR)...}),(uGx16 € ({before eIt2) SERVICE),

(uGx14 € ((before eit?) OBIECT) ;

ITMR-IMP|

[TMR-IMP]
IMP —|

The application of {CRR-TM] rule to the [*]ed expressions in {P18a] and {F16¢]

causes the ‘(before elt2) term to be moved inside the CREATE expression. Subsequent

application of the [TMR-XN] rule causes ‘(before elt2)’ to be compared with ‘(before

(starting-time-of givel))'. EIt2 here is the time when the function of givel becomes true.

The starving time of any action is always before the time when its funciion becomes
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TABLE 4.VI: Deductions from [P15a] and [P15¢].

Name

Sequents

Rules

[P16a]

[P16b]

[P16¢c|

|P16d]

((betore elt3)(valuaof (function givez))),

((before eltd){value-of (behavior givez))),

|(before eltd)(function giver}],

((before elt2)

(CREATE ((before (starting-time-of give1)l{owns seller-z uGx14))})i*],
< service-exp> — ..., (CREATE(1) {(EXISTS x CAR)...}) ;

({befare elt3){value-of (function give2))),

((before elt4){value-of (behavior wivez))),

[{before elt1){function givel)],

< setvice-exp >

— ..,[CREATE{1} {(EXISTS x CAR)...)).{{before elt2)(items-of giver uGx15))

((before elt3)(value-of {function give)}),

((before elta)(value-af (behavior givez}))),

[(betore elt1)(function givel)],
((before elt2)

(CREATE ((before (starting-time-of give1)}{(owns seller-2 a4 )N,

—~ ...,{(CREATE{1) {(EXISTS x CAR)...)),(uGx15 £ ((before elt2) SERVICE) ;

{{before elt3)(value-of (function give))),

((before elt4)(value-of (behawior pve2))),

[(before elt1)function givei)],

— ...(CREATE(1) ({EXISTS x CAR)...)).(uGx15 € {(before «112) SERVICE),
((before elt2)(items-of givel UGx14)) o

substitution: [uGx14 ari|

[CRR-TM|
[TMR-XN]|
|CREL-1}

{CRR-TM]
[TMR-XN|
|CREL-1]

true. Indeed, the time when the function of an action becomes true is ailways between

the interval-of the action, if at all it becomes true. This again is a general piece of

knowledge built into the time apalysis functions. This causes the time term " before

elt2)’ to be dropped by the tmxn function from the CREATE exptession.

At this point, to apply any of the CREATE elimination ralea it is necessary to test

whether ‘(before (starting-time-of give}) (owns seller-2 uGx14))’ is true in the world state.

This calls for s binding for uGxl4. Thus an axiom test is performed. The atom

((before eft2){items-of givel uGx14)), in sequent [P18d], is matched against the atoms in

the world state, in which the timed expression,
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TABLE 4.VIIl: Deductions from [P18a] and [P18c}.

Name Sequents ‘ Rules

[P17a) | {(before eit3){value-of (function givez))),

((before elta)(valueof (bchavior givez))),

{(befate eltl){function givel Ni*l.

({before (starting-time-of give1)lowns seller-2 car-1))})]*],
((before (starting-timesof give1))(owns seller-2 u(Gx14))),
<service-exp> = ...,(CREATE(1) ((EXISTS x CAR)...));

[P17b} | {(before elt3)(valua-of (function rivez))),
((before eltd)}{valus-of {behavior rive2))),
[(before eltl){function giver}},
({(before (starting-time-of givel)){owns seller-2 uGx14)))),
({before (starting-time-of givel)){owns seller-2 car1)))),
— ...{(CREATE(1) (EXISTS x cAR)...)), [~ CRR-E]
{uGx15 € {[(before elt2)} SERVICE) ; |CREL-1|

((during [{startingstime-of givel) {ending-time-of givet)])
{items=of givel car:1)]

is carrently true. The time term, {before elt2)’ will match with during-expression above,
since ‘(before elt2) intersects with the interval of the during-expression. This causes
uGx14 to be bound to car1. To simplifﬁr matters, let us suppose that the seller-2 does own
car-1. Then [CREL-1] rule is applied resulting in the CREATE expression being replaced
by its argument, as shown in sequents {P17a] and [P17bj. Incident.alljr, this also causes

sequent {P16d] to become an axiom, as shown in the table.

The next logical step is to analyre the < service-exp>> in the problem sequent
[P17a). If this is dome it will lead to 2 dead end since no appropriate bindings for uGx13
(whose range is a SERVICE) exists in the world state: For all services, %, in the world state
it is not known whether (items-of givel x) is true or false: it is unknown. Thus this line
of analysis will be dropped. Let us choose the function of givel for analysis now. The
expansion f{or this function is the first expression in sequent [P14a}. A similar analysis of
this expression will now cause the creation of ‘{(owns John car-1) aMD {NOT(OWDS seller-2 car-
1)]’ vo occur befare eltl, i.e. before the time of successful termination of givel. To make

matters simple et us suppose that these are created by simply asserting them into the
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world state.

The assertion of ‘(owns John car1)’ before eltl (i.e. the time when givel ends) will
couse the CC at (status-of givel) to be evaluated, because ‘(status-of givel)' is dependent
on ‘(owns John); it is im Dy s The evaluation of the CC at ‘(status-of give1)' will

pow cause this status to be set t0 successful by default.

At this point the (CREATE(1) ...) expression that is on the right side of all the
problem sequents is already true in the world state, because John got the ownership of his
car before he paid for it. Thus, if [CREL-1] rule is applied to the-sequents-in the frontier
set after the application of [-— CRR-E] rule to remove the existential quantification, all
the sequents will reduce to axioms. However, John has not yet paid the money for the

car.

I could have prevented this situation by associating a CC with {owns PERSON)’
which prohibits ownership of an object unless it is paid for, i.e. the cost of the item had
been already given to its previous owner. | did not do this here, This brings to focus a
genenﬂ problenﬁ in analyzing parallel actions: It is impossible to anticipate all the con-

ditions that govern the successful completion of a set of parallel actions.

A point of view that has influenced the design of CK-LOG is that, knowiedge
specification should not require da knowledge engineer to anticipate ol possible ways in
which knowledge units might interact. To the knowledge engineer his perspectives during
knowledge specification should be always local to each concepi. The system should be
able to take care of the interactions between the various concepis. The use of parallel
predicaie flags provides the pecessary extra logical capability to respond to pathological

situations like the one illustrated above, which might arise 28 a result of this.

Thus, at this point the presence of the common parallel predicate flags in the
remaining unanalyzed expressions of sequent [P13]) will now cause these expressiona also
to be expanded and assimilated into the world state. This will result in the successful
completion of givez, thua solving the problem, under the.bypothesis [HP4], namely that
John did decide to buy this car.

The phenomenon pointed out above illustrates another characteristic of proofs in
CK-LOG. During the proof process the world states associated with sequents in the
deduction tree may change. As a result of changes made to a world state, W, associated

with one sequent, Q, it is not just Q alone that might acquire a new world state, say
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W*, many other sequents which had the same world state W associated with them may
also acquire the new world state W*. Such a change may cause many sequents besides
Q to reduce to axioms. Thus as the effects of actions change 3 world state, several prob-
lems in a deduction tree may get reduced to axioms. The reverse may aiso happen. A
problem that had been previously reduced to an axiom might loose its axiom status as a
result of acquiring the new world state W°, This phenomenon of interaction between
the action c¢alculus and proofs is unique to CK-LOG. It does not occur in conventional
natural deduction proofs,

How should one view this proof discussed above! Does it constitute an execution of
the (CREATE (owns Joha car-1))’ action! It does not because the time instants at svhich
the actions occur have not been specified. They have been stated only relative to each
other, and that they all occur before [1984 Oct 1). The proof displayed above may hox-
ever be used to generate a plan for John owning a car. This may be done by extracting
from the proof the problem sequents ([P1], [P5], [P12]) and replacing the constants that
appear in these sequents with the variables to which they were bound to. The resultant
problems are shown below in table 4.IX. These three problems taken in sequence may

now be viewed as a plan for solving the initial problem,

TABLE 4.IX: A Plan for Car Ownership by John.

MName Sequents
P — (CREATE ((EXISTS x car){[after (1984 Sept)lfowns Joba x]))) ;
{P5| — (Reansart
{{eGx1 € CAR),(eGx2 € SELLER),(seils ¢Gx2 eGxl),
{[before (1984 Oct 1)][eGx3 € BUY[},
([before {1984 Oct 1)]{seller-of eGx3 eGx2}),
(Ibefore (1984 Oct 1)|[buyer-of eGx3 Joha)),
([before (1984 Oct 1}}[items~of ¢Gx3 eGx1]}),
(CREATE(1) ((EXISTS x CAR)...)) ;

[P12] | (elel E (cost=-of eGx2)),
{L-acsert
[{{between (interval-of #Gx3))GIVE eGx2 John eGxl1)),
{(between (intervai-of eGx3)GIVE Jobn eGx2 (price-of #Ic1))))
~ ..., (CREATE(1) ((EXISTS x CAR)...)) :

This plan has a critical time element. {t is valid only if it occurs before {1984 Oct 1]. At

the time of execution of this plan John will be asked to select the ¢ar he wants and buy it
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from the dealer he chooses to buy it from. John would also be forced to select the time
instants at which he wishes to perform the various actions, These time instants should,
of course, satisfy the time conditions given in the plan. Thus there are clearly two dis-
tinct modes of action interpretation in CK-LOG: Plan formation mode and plan execu-

tion mode,

Forming » plan by eliminating some of the details in a proof tree serves two pur-
poses: It makes the plan statement brief, and it also allows for possible variations in a
plan at the time of .its execution: The way.a problem: was. solved :at:the.time of :plan:
generation may not exactly coincide with the way it gets solved at the time of plan exe-
cution. By representing in 3 plan only the important and critical problems extracted
from a proof tree, and dropping off the details of problem solution, one allows for the
possibility that these problems might get solved differently at the time of plan execution.
The problem details and varible bindings presented in a plan would represent the details
that one ought to expect at the time of ita execution. During execution if one or more of
the problems staied in a plan does not oceur, or occurs in a different form, then this will
indicate a departure from the plan, calling for either plan revision or action modification.

Thus plans represented in CK-LOG may be used to guide plan execution.

Two guestions arise about extraction of a plan from a proof: In gemerzl, which
sequents should one extract from a proof in order to form a plan for the proof? One pos-
sible guiding principle is that problem aequents where the world state is modified should
be included in » plan, and sequents where no world state change occurs may be omitted.
This is not a sufficient characterization of the plan extraction process, because there are
numerous exceptions to this principle. Could one always choose to remove from a pian
the bindings given to the variables in t.He prooft In the Naval Operational Planning
domain situations do occur where one wants to keep some of the bindings in the plan
(such as for example the bindings given to the forces that are going to be used in a mili-
tary action). The bindings that occur at time instants in a future time {with respect to
the planning time) could be removed in many cases, but not always so. Thus, at the

momegt | have no definitive answers.

[n the operational planning problem the concept of an operational plan, ealled
OPPLAN, is rather clearly defined. Thus oune could extract from a proof the information

needed to complete an OPPLAN specification. [ believe, this is indicative of the general
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situation. One has to define what one means by a plan in order to extract a plan from a
proof. If the concept of a PLAN is available, then s proof like the one above may be
viewed a3 a plan generation process with respect to the given definition of PLAN. The
plan ¢orresponding te a proof may then be extracted from the proof. The design of PLAN
will specify this extraction process. This PLAN design could depend on the actions
invoked in a proof and perhaps also on the rules used in a proof, or more generally on
the structure of a proof tree since proof irees are available to the system as objects. The
definition .of the concept of PLAN.is by itself. an interesting.problem.for.further investiga-.

tion.

In the context of CK-LOG's plan execution mode, a plan may be viewed as a
specification of a program to accomplish a goal. The problems and variable bindings
stated in the plan specify the problems and bindings that ome sbould anticipate to
encounter in trying to achieve the goal of the plan. Any departure from this will indi-
cate a need for plan revision, which may then be done at the time of plan execution.

The nature of this plan revision problem thus depends on the concept of the plan itself.

Besides plan generation, plan execution and plar revision, the TPS may also be of
course used to apswer questions about a plan, or about a given course of action. One
may pose to TPS problems in which the objective is to show that if certain courses of
actions are followed in certaip situations, then certain consequences would follow. For
each action and each plan of action CK-LOG has the full eanability to analyze all
aspects of the action, the plan and its execution. This is the most significant difference
between CK-LOG's mode of describing actions, and actions described through precedural

nets [Wilkins 1982), or through procedural attachments [Bobrow, 1977).
The most significant points to be noted in the above action ealeulus are the follow-
ing two:

1. The action calculus functions in an environment of incomplete knowledge
about world states, and

2. Action definitions do not require frame azioms (McCarthy 1989].

The frame problem pointed out by McCarthy simply does pot arise in CK-LOG’s acticn
calculys. This is because of the way the TPS and TMS interact. During the theorem
proving process TPS uses TMS to build partial models of world states. At every point

in the proof genmeration process the world states associated with the problem sequents
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delimit the deductions that TPS could make, When an action occurs, the world state ia

changed selectively to reflecy only the changes introduced by the action. The rest

remain unchonged. The use of modal operators in CK-LOG makes this possible. Thus

there is no frame problem in CK-LOG.

The action caleulus in CK-LOG provides » powerful snd compeiling alternative to
the sstuation calewlus of McCarthy.

The knowledge representation scheme presented here is rather a complex ons, How

easy is. it W0 describe knowledge in this. manner! - To this author it seems quite-easy; but—

there is no doubt that the knmowledge specification can itself be a formidable task for
large domains. This is to be expected. Even in situations where one thinks one knows
» situation well, the description of the situation ia often not easy in any language, formal
or natural. It requires training and practice. We have been involved in codifying
knowledge in varicus domains for centuries now. But in this process we bave been com-
municating only with other humans, who with difficulty and practice can at times mas-
ter the knowledge. The trend to communicate in a like manner with machines has not
even begun yet. 1 believe that with better understapding, more practice and better
implementations of CK-LOG like aystems one would be able to formulate better both
the pragrmatic and logical problems involved in knowledge engineering. 1 would like to
discuss in the next sectiop some prelimipary ideas on the nature of this knowledge that
one describes to CK-LOG and the criteria that one might we to design a representation

for it.

1 1do set yet have esough sxperisnce with the wse of CK-LOG to comment on the dificaltior a9d problems that the wie
of CK-LOG posw. | have ofted amesuntiarwd trouble in the we of ACHIEVE, CREATE and DESTROY opetiion.
The tronble bad been slwayw with the foilowing kind of diffiexity: Ta the semastics gives t¢ CREATT operator,

{CREATE (X pams Y)) m ({DESTROY X) on (CREATE Y)),
which s, of course, the way # shonid be. Often, when one defines funcivem aad behawsin, ORG DMLY ERCORRLET AXDIVS-
sions like, ((EVERY 2 NCREATE ..]))" U one new imvakes & fumation through (ACHIEVE (funetion .1 and this
functios had the above anivemsally quantified axprossion then the intorptwtasion of thin ACHIEVE will ned ruault in
t4e intended iaterprvtasion for the faaction, in cases fike thave one has to invoke the fewetion wsing (valuemof {fune-
tiew . }). In geaemnl,

. {X ovom (operator Y)| ol [operator (X owrLoEs Y.
1 bave repestedly gottan inte trenble bechume of thin. Ome has to be carefel. 16 o geaenlly aafer te on guals '~
(value=of X} ;’, than goals ‘'~ (ACRIEVE XY, 1f the vaine of X is 8 operaior free axpreniod thes ACHIEVE abonld
be uped. I it is 2ot them vaime=of should be asad. However, this smumes that a4 the tite the value of X war dullned
its mede of call sheuld ba ansicipated. This feasure in quite idiovyncratic to the carrent set of ACHIEVE aad valoe
of defnitionn waed in CK-LOG. There is ue insringic rmasen why this coald aet b chasged.

-
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5. The Logic of Frames in MDS.

My objective here is to enunciate a principle of desiga for creating frame represen-
tations of knowledge, that are appropriate for systems like CK-LOG. In the discussions
below | will refer to the knowledge K[U] without its function, behawvior, analysis and
design aspects as the frome theory of U, and use the notation F{U] to denote this
theory. The theory F[U] will thus consiat of all the dimensions and the CC's asscciated
with the dimensions. This is the theory of statica, for the uriverse U, aamely the
theory that characterizes all-the action free-world ssates of U (one- may: think of-them as -
snap shots of world states at given instants of time). The specification of the aspects of
kpowledge other than the etructures then provides the theory of dynamica for the
upiverse, The discussien beluv' is concerned only with the theory of statics. There is
pot much known yet about the theory of dynamics. There is definitely a need to get
results on the nature of this theory of dynamics similar o the results discussed below for

the theory of statics,

One may view logical languages like TML snd DL as offering certain facilities to
distinguisk between distinct constants in 32 universe through distinet descriptions in the
language. | will later make this notion precise. Roughly speaking one might say that
the kinds of distinctions that ove ia.able to recognize using a language delimits the kinds
of problema and solutions that one can express and solve using the language and its
interpretationa. Given the power of a first order language, the principsl emphasis in the
design of frame theories falls on the building of the right kinds of expressive facilitics that
facilitate efficient discrimination of constants in a universe. I would like to formalize
this notion and claim that it is an useful ootion. It can be the guiding principle for

designing frame theories.

Lev us say that the resolving power of s first order language without the equality
symhoI" 1., is expressed by the equivalence classes of consiants distinguished by the
|anguage, i.e. ¢ and d belong vo different equivalence classes only if there is 2 deacription
D(c) of ¢ and s deseription D(d) of d such that in some world state D(c) in true and D(d)
is false. If we have a complet;e and consistent theorem proving system, and a compisic
specification of the knowledge F[U] (this notion needs to be made precise), and if L

s+ Thit & techaicalivy +has is intended to prevent twe consianis frem being diztinguiabed juss from their names.
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resolves ¢ and d then the system would be able to prove that ¢ is ot equivalest to d in
L. Indeed, if the theorem proving system is complete and consistent then one may use
the expressive power (the resolving power) of the language L to characterize the concept
of completences of F[U]: It is complete iff for every ¢ not equivalent to d in L, the
theorem proving system is able to prove wsing F[U] that ¢ is not equivalent to d. The
problem of finding such 3 F{U] is similar to the problem of finding a complete set of
axioms for a formal system, s difficuit problem in any pon-trivial system, Principles of
design that give local guidance to the design -of such.a system are thus valuable- princi:-
ples. The locality principie first mentioned in section 2 is one such principle. This prin-

ciple and the formal notion of a frame are defined in this section.

Let me introduce some definitions. Let L be the domain language without the
equality symbol. [t does not contain modal expressions, Let D be the set of all con-
stants in the universe U, each with a unique and distinct name. | will assume
throughout that all the world state models, U, , i.e. sets of sentences {closed formulas) in
L which are true in a given interpretation, are contradiction free. They may, bowever,
be incomplete in the sense there may be sentences whose truth value is unknown in the
models. Let U be the set of all such world state models in the universe. I will use the
notation U j¢ d] to denote a world state that contains constants ¢ and d, and given
Ulle d I will use the notation U,[d ¢] to denote the world state obtained from U e d] by
interchanging the names of ¢ and d (ie. the names are switched in every sentence of
U e d}). Then,

[D1}. Distinguishability: Constants ¢ and d are distinct only if there is a finite U,fc d]
in U such that UJfd ¢} is not in U.

For example, if ‘{father-of ¢ d)’ appears in a world state U e d] in U then clearly U,[d <}

is not in U.

[D2}. Subset L{¢) of L: L(c)is a subset of L defined by the constant c,

Lic) = {S(x} | {(EXISTS U, U)ISTRUE 5(c) U,))}.
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where S(x) is an arbitrary formula of L with one free variable x.

[Da]. L-equivalence: [(¢ == d)wr L(c) = L{d)].

[D4]. Resolving Power of L: This the set of all L-equivalence classes of D, denoted
by D/L.

Theorem 1: Two constants ¢ and d are indiztinguishable (ie. not distinguish-
able as per [D1]) if and only if (c = d).

Proof L-equivalence implies that every logical condition that ¢ satisfies in some
world state is also satisfied by d in some world state. The essential part of the proof is
to show that if ¢ and d are L-equivalent then then they satisfy the identical sentences in

every world state in which they are present.

Suppose ¢ is L-equivalent to d and there was a world state U, in which some for-
mula S(x) is true for x = ¢, and false for x = d. Then ((noT 5(d)} anp S(x)) is in L(¢) bur
not in L{d), a contradiction. Thus in every world state in which ¢ and d exist and 5(c)
is true, 5(d) is also true. Suppose S(c} was true in U, and S(d) was unknown. Then
there is a consistent extension of U, in which 5(d) is no longer unknowa. In this exten-
sion S(c) should have the same truth value as 5(d). In this case U,lc d] and U jd ¢] are

both in U. Hence ¢ and d are indistinguishable.

If ¢ and d are indistinguishable then for every Uje d} in U, llth[cl ¢] is also in U,
Hence it follows that ¢ is L-equivalent to d.

Corollary 1.1: I (¢ ==, d) then for every relation name, 1, in every world state
in which both ¢ and d exist, either (r ¢) == (r d), or there is an extension of
this world state in which (r ¢) == (r d).

Corollary 1.2: If (vor (¢ ==_ d)) then there is a U, and a sentence of the form
$1(c d) = {S(e, d) avo P|
which is true in U, for which the corresponding sentence
S1(d ¢) = [S{d, ¢) avp P}
is false in every complete world state in U.
Proof: P here is a sentence that would depend on ¢ snd d. Since ¢ is not L~
equivalent to d, there ia a finite world state, U‘{‘:d] in which for some relation pame, r, (l‘

¢) #£ (r d), and UJd ¢] is not in U. Let P be the conjunction of all the sentences in
UJc d] in which neither ¢ nor d appear. Let S(c, d) be the conjunction of all the
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sentences in UJfe d in which ¢ or d appear. This conjunction will use all literals with
relation names, r, for which (r ¢) v (r d). Since U,d c| is not in U, the sentence S1(d, <)

above has to be false in every world state of U.

Thus if ¢ and d are L-equivalent then clearly there is no way by which one ¢an
create descriptions in L that distinguish them. In this sense D /L defines the resolving
power of L. The equality relation s excluded from L because otherwise every
equivalence class in D/L will be trivially a singleton class, since the formuls (x = ¢) is

irue when x is ¢ and false when x is d.

Let U, be 3 subset of U such that for every pair of constants, c and d, if ¢ and d

are distinguishable in U, then they are distinguishable also in U,.

{D5). Adeguacy of F{U]: F[U] iz adequate if every world state in Ug is a model of
this theory, and a world state not in U is not a model of the theory.

Thus P, C models of F[U] C U. Notice that the adequacy Dotion is thus a weaker
notion than the notion of completeness and consistency of a theory. If T is a complete
apd consistent theory of U in the language L, then the theorems of F[U] could be a
superset of the theorems of T. These additional theorems of F[U] will be hopefully such
shat they help distinguishability at the expense of loosing onea ability to distinguish all
distinct copstants in all possible ways. The following theorem fixes the relatiouship
between the deductive closure, ©, of an adequate F{U] and L{c) for ¢ in D.

Theorem 2: [(((EVERY x)5(x)) € ©)wr (EVERY yXS(x) € L{y))l
((EXISTS x)S(x)) € &) veus (EXISTS yXS(x) € Liy )

Proof follows from the definitions of adeguacy and L{c). The resolving power of L is
related to the completeness and conpsistency of the theorem proving system (TPS) by the

following definition:

(D8] F{U} resolves o domain D if for every pair of constants ¢ and 4 in D that are
distinguishable there is a formula S(x) such that
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[(S(x) € L{c)) ao (sor (S(x) € L(d)))] and

F{u} — S(c) e (ror S(d))] ; is valid.

Notice that pot all the formulae that distinguish ¢ and d need be provable. Also, this
assumes that F{U] somehow knows about all the constants in D. Thus a theory F[U]

resolves D if it ¢an be used to prove the distinguishability of all paits of constants that

are not L-equivalent:

Theorem-3: f F[U] is adequate then it resplves the domain D ... - .

Proof. I a theory is adequate then for two distinguishable constants c and d, there
s a finite model UJc d}, for which its corresponding U [d ¢] is ot a model, Clearly
then, by corollary 1.2 there is a sentence 51(d, ¢) which is false in every model. Now
construct the sentence {nor S2(d, <)) by uniformly replacing every constant in (~or S1(d,
c)) other than ¢ and d by new variables which are all existentially quantified. Then (notT

$2(d, ¢)) will have the form,
(nor 82(d, €)) = [(EXISTS x1(EXISTS x2)...(EXISTS xn}{nor (S1(d, c) ave P ),

where P* is obtained from P by uniformly replacing all the constanta other than ¢ and d
by the variables x1, x2, ..., xn, respectively. This sentence is true in every world state.

Hence the following sentence iz a logical consequence, and a theorem in the theory:
53 = ((EXISTS xXEXISTS y){(~or 52(d e)))-

Also, by corollary 1.2 52(¢, d)) is true in U, . Then the following sentence provably dis-

tinguishes the constants ¢ and d:
S(y) = {82(d y) avp S2(y d)),

because S(y) is in L{c) but not in L{d). Hence the theory resolves D.

Our objective in designing frame theories is to get theories that are adequate in this
sense, namely using the theory we should be able to distingnish all distinguishable (non

L-equivalent) constants. Among all such compiete and consistent theories, for a system
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like CK-LOG, we nced theories that satisfy an additional condition. 1 bave called this
condition the locality condition. | mentioned in section 2 that the locality condition
guarantees the retrieval from the world state of all the conditions that are relevant to a
given literal as!mrted into the world state. | would like to establish here the truth of this
statement and. alsu show that theories satisfying the locality condition are adequate

theories. To do this I need to define the notion of a frame.

§.1. Frames and Dimensions.

Let the P(c) be the predicate signature of ¢ defined as follows:

[D7].  Ple) = {r | (EXISTS U, UXEXISTS yXISTRUE (r ¢ y) U))}.

. . *
where t ig a relation name .

Clearly, if P(c) 9= P(d) then ¢ and d are distinguishable. The concept of P-equivalence

may now be defined as,

(D&l P-equivalence: Two constants ¢ and d are P-equivalent
if and only if P(c) = P(d).

Clearly, L-equivalent classes are refinements of P-equivalent classes. Since the set of
relation pames in L is a foite set, there are only a finite number of P-equivalent classes
in D. Let,

X={X X, ..Xg)
»
be the set of all P-equivalent classes in D. For a class, X, let the predicate signature,
P(X), of X be the same as P(c) for any ¢ in X. One may now define a dimension of X

+ | will assume that only binary relxtion pames are used in L. Clearly all n-ary predicates can be described using she
appropriste number of binary relations.
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D9l Dimenasion: (r X Y} is a dimension of X only il there exists a ¢ in X, a world
state U, , and a d in Y such that (ISTRUE (rc¢d) U) = T.

This is essentially the same definition given in section 3, but now we have 3 model
theoretic understanding of what this concept X is. Every concept, X, used in a
knowledge representation system like CK-LOG in thus a member of X. One may =ay
t.hat. Z is a generalization of X if P(Z) is a subset of P(X}. The inheritance riles that
one uses over this generalization hierarchy appear to be sheer inventions. There is no
logieal reason why they should work. But if ane assumes that one uzes the same relation
name, r, in anchors (r X) and (r Y) for differcnt X and Y, only becaunse the properties of
(r X) are in some sense similar to the properties of (r Y) then the use of inheritance rules
makes sense. Most of the time the properties imposed by the inheritance rules coincide
with the nature of things in U. However, exceptions do always cccur and all frame sys-

tems provide Tacilities to define such exceptions.

In defining frame theories one is attempting to identify the equivn;lence classes X
defined above. A frame, X, is simply the set of all dimensions of the class X. If one can
identify X for an universe U then the dimensions of the classes in X are precisely the
frames that one would want to use in the representation of the knowledge of the
upiverse U. We go about doing this by choosing an appropriate set of relations, and
defining the dimensions for them. It is fortunate that frames defined in this manner
coincide with the frames defined by the claaéea in X. It must have something to do with
the way we use relations in languages.

QOupe may now define the distinguishability criterion in terms of the relation paths

defined by the frames. Clearly, if there is a relation path, p of length greater than 1,

such that for two constants ¢ and d,
(nvor [(c pd) rr (d p c)])
is true in a world state then ¢ and d are distingnishable. if on the contrary no such rela

tion path exists in any world state for ¢ and d, then ¢ and d are L-equivalent. The fol-

lowing is a general statement of this condition for a distinguishing relation path, p:
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(D10).  Diatinguishing relation path: p_, is a distinguishing relation path for constants
c and d, if ((EXISTS 2){{c p,, 2) A (voT (d p gy 2))]) is true in some world state.

1 will refer to the condition in [D10] as a distinguizhing condition forc and d. In
frame systems:the constants that belong to different classes X and Y are already distin-
guishable by their class memberships. However, to distinguish the distinct constants
that belong to the same class, X, one needs additional facilities besides the facility to
define dimensions. In frame systems like MDS, this additional facility is provided by the
_definition-of the CC's.

In general one may think of a coexp at each anchor (r X) as a potentially infinite
conjunction of all the distinguishing conditions associated with pairs of instances ¢ and d
of X, all of whose distinguishing relation poths have the form (r . p), i.e. produced by
the concatenation of the relation name r to p. However, since we have only a finite
pumber of relation names, the regularities which must inevitably exist among the condi-
tions that occur in this infinite conjunction, enable us to state the conditions using
finite sentences. In such a CC for every distinet pair of instances ¢ and d of X, every
distinguishing path p_, starting with, r, will occur implicitly in the ccexp.

The assignment of a value for {r ¢) will cauze a contradiction ouly if for some ¢l
and dl in the world state {not necessarily instances of X) this causes one of the distin-
guishing conditions for ¢l and dl to be violated. CC's of this kind will satisly the local-
ity principle stated in section 2 for the following reason.

Suppose a change & occurred at (r ¢), and as & result of this change a potential con~
tradiction may arise at another anchor (r’ d), where d is an instance of Z. Then in the
ccexp at the anchor {r’ 2], there should be a distinguishing condition which is likely to

become false as a result of the change at (r c). Let

(EXISTS wXd q w) awo (mor (d1 g w)))
be this condition. This condition may become false as a result of the change at (r ¢)
only if the truth of this conditien depended on the change § that oceurred at {rc). For

this to hoppen thers should be a prefix of g, of the form (q . (r)) , such that

{dq’ c)or(dl q” el
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is true, or was true in the world state vhat existed before the change at (r ¢). Or there
should be prefix of q, of the form (q°. (er)), where (r, cr) ia the converse relation name

pair, such that for some constant b in 4,
{d q’ b)or(dl q b)]

is true or was true in the world state that existed before the change at (r ¢). In either
case, since ip our system for every relation its.converse is.also.in the model, there.is s
relation path between sither ¢ and d or between ¢ and d1. Hence the locality condition

is aatiafied.

Thus every constant in a worlci state that can potentially casse a contradiction as a
resuit of a change at {r c) will be related to ¢ via a relation path. Thus all the affected
constants are in a sense local to ¢, i.e. reachable from c.. Hence the name locality conds-
tion. It seems only reasonable that for each anchor (r ¢) there should be a frame aur-
rounding it which inciudes in it only the anchora that are affected by the changes at (r
c). This is precisely what frame systeme allows one to do. When performing a contrad-
ictil-m cheek this will force the system to check every potential dependency that exist in
a world state, thus assuring that TMS would return 1o TPS all the logical conditions
relevant to a given set of changes, ‘

A second conseguence of this view of CC’s is the following. For any z, (r’ z} would
be in the dependency set Dhl iff there ia a relation path q@ such that for some constant
b in 4 {b q 2) was true either in the new world state or in the old world state. By
analyzing the CC's one can identily these niati;:n paths q and use them to define the

filters mentioned earlier in section 3.

These observations should provide some guidance to a knowiedge engineer in writ-
ing the CC's and in selecting the dimensions for a domain. They also hopefully set some
preliminary (and admittedly very rudimentary) criteria for a possible theory formation
system which seeks to identify the classes X in a domain, discover the dimensions and
write CC's for them, 1 believe that a deeper underatanding of CK-LOG like systems will

one day enable us to build such learning systems.
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8. Concluding Remarks. ,
I bave here presented 3 logicnl' calculus for processing knowledge, CK-LOG, that

_integrates knowledge representation 'nain; fromes with problem selving using theorem
proving. The organization and operstion of CK-LOG incorporates the following novel
features:

1. Combines 3 theorem proving system based on natural deduction with 3 frame
based knowledge representation system;

2. Extends the essentially ssructural notion of frames to the more general notion of
concepls;

3. Istroduces a new termination algorithm, called the mating algerithm, for the
theorem proving process; .

4 Extends the standard notions of problem solving through theorem proving to a
logical system that uses medal operalors; '

5. Shows how specialized reasoning facilities and inference rules may be incor-
porated in a theorem proving system to represent and resson about actions and
their time dependencies;

8. Shows how models may be uzed in such a theorem proving system to represent
and reason about posasble worlds associated with the modal expressions;

7. Shows how a modeling system bused on three valued logic may be uszed to
represent defaults, or identify information that is needed for the solation of a
problem but is unknown in the world state;

8. The analysis in section 5 provides the beginnings of a deeper logical understand-
ing of the nature of frame =ystema and their design.

CK-LOG offers a powerful and compelling alternative to the situation calculus
[McCarthy 1969} approach of representing and reasoning about actions. It is possible to
implement CK-LOG in a manner that it has the meta-level reasoning abilities to reason
about its own problem solving processes, The current implementation of CK-LOG does
not have this capability. Being the first implementation of its kind there is room for
much improvement both in program orgapization and the implementation technology.
Hopefully such improvements will be forthcoming in the fature. They are vital to
achieve the performance that one has come to expect out of frame systems, Also there is
need to gain experience on the use of CK-LOG as » knowledge processing system to
build ‘expert systems’ in complex domains. | am now using the building of OPPLAN-
CONSULTANT [Srinivasan 1984] as ap experimental vehicle. This planning domain poses
several challenging problems, It is this challenge that heiped erystallize the many inno-
vations in CK-LOG.
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Besides the problems in improving efficieucy and implementmibn techniques men-
tioned above, CK-LOG poses several fundamental logical problems which need further
study. Most of these are concersed with the monitoring of multiple actions by the
TPS5/TMS systems. We have to understand better the way action predicates mediate
action monitoring between the TPS and TMS, and develop some guidelines for the
specification of action functions and behaviors. The few examples of these discussed in
{Srinivasan 1984] are not enough to inspire any general patteras of organization. There
is also room for some changes in the.inference rules themselves,.those.that were specified .

for the modal operators. Here again more experience is needed with the use of the rules.

I did not analyze the time function, tmxn that was introduced in section 2.9. It
would be useful to describe tmxn itself in terms of a set of inference rules. This is not
for the sake of better system performance, but for better analysis of its properties. It
should not be difficult to do this, I have chosen to represent and reason about time in
terms of lime instants, instead of tirne intervals as Allen did [Allen 1984]. ] believe, the
choice here is just ome of style and personal preferences. I do not think interval
representation has any special advantages to offer, either from implemeantation poiot of

view or from the point of view of logical elegance.

There is also a whole set of problems pertaining to the use of CK-LOG as a
knowledge based learning aystem. | indicated st 3 few places in the body of the paper
that CK-LOG does have a potential for being used as a learning system. Again, to

understand the problems here some experimental work is necesaary.

1 have presented in this paper an informal discussion of the static theory of CK-
LOG. I have not said enough about its dynaméc theory its function, behavior and
analysis as a koowledge based problem solving system. 1 have net adequately dicussed
the dynamics of interactions hetween TMS and TPS, and bow through such interactions
and through the use of action predicates, CK-LOG might analyze the effecta of on ongo-
ing actions on a world state. A preliminary discussion of some aspects of these appear

in {Srinivasan 1984]. Much more experimental work is peeded in this ares.

Let me conclude this paper with a shor historical note on MDS and the evolution
of ideas that led to CK-LOG. MDS waa first presented as a koowledge representation
system in 1073 1JCAI at Stanford, California. At that time an initial implementation of
MDS, called TEMPEST (a template establishment system) was available. What came to
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‘ be called fromes, after Minsky's paper {Minsky ‘1975] were then called templeates in MDS,

I did not then have good ideas on how one might use the knowledge represented in MDS
to state and solve problems. I thought mostly in terms of procedures written in a
language which was then called the designer {Srinivassn. 1973a] but it was never imple-
mented. The ideas proposed in MDS were first implemented into » working system by
Sridharan [Sridhoran 1978]. Thia system was called AIMDS (Action Interpretation Meta
Description System). It used the modeling system propesed in MDS, but used pro-

cedural attachments to solvé problems using its model building capabilities.

The poasibility of using the natural deduction system of Kanger in MDS waa first
explored in 1973. But, because of several interruptions in my work this idea was not
pursued vigorously for a long time, until I started work on tke Naval Operational Plan-
ning problem in 1982, This led to the results presented in this report. [ am thankful to
the Navy Ceater for Applied Research in Artificial Intelligence for providing me this

opportunity.
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